• 제목/요약/키워드: thermodynamic equations

검색결과 154건 처리시간 0.024초

A Consideration of Analytical Thermodynamic Modeling of Bipropellant Propulsion System

  • Chae, Jong-Won
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.243-246
    • /
    • 2008
  • This paper is to consider analytical thermodynamic modeling of bipropellant propulsion system. The objective of thermodynamic modeling is to predict thermodynamic conditions such as pressures, temperatures and densities in the pressurant tank and the propellant tank in which heat and mass transfer occur. In this paper also it shows analytic equations that calculate the evolution of ullage volume and interface areas. Since the ullage interface areas are time-varying,(the liquid propellant volume decreases as the rocket engine is firing; the change of ullage volume correspond to the change of liquid propellant volume) for a numerical convenience non-dimensionalized correlations are commonly used in most literatures with limitations; a few percentages of inherent error. The analytic equations are derived from analytic geometry, subsequently without inherent error. Those equations are important to calculate the heat transfer areas in the heat transfer equations. It presents the comparison result of both analytic equations and correlation method.

  • PDF

아공정 Al-Si-Cu-Mg 합금의 액상선 온도 곡선 예측 (Prediction of the Liquidus Temperature Curve for Hypoeutectic Al-Si-Cu-Mg Alloy)

  • 김근학;박동성;오승진;전준협;윤상일;김기선;김태영;이석재
    • 열처리공학회지
    • /
    • 제31권6호
    • /
    • pp.300-306
    • /
    • 2018
  • In the present study we proposed new equations to predict the liquidus temperature curve for hypoeutectic Al-Si-Cu-Mg alloy. A thermodynamic simulation was carried out to calculate the liquidus temperature, eutectic temperature and eutectic Si concentration with different Si, Cu, and Mg contents in hypoeutectic Al-Si alloys. Regressed equations were derived using the thermodynamic simulation results by multiple regression analysis. The proposed equations were compared with the equations reported previously by other researchers and agreed better with the experimental data. The addition of Cu and Mg lowered the eutectic temperature. The eutectic Si concentration was decreased by adding Cu whereas that was increased by adding Mg. Al-Si binary phase diagram was successfully predicted with a consideration of the effect of Cu and Mg addition by using the proposed equations.

고 임계 압축인자를 갖는 탄화수소 연료의 초임계 열역학적 물성 예측을 위한 상태방정식 분석 (Cubic Equation of State Analysis for the Prediction of Supercritical Thermodynamic Properties of Hydrocarbon Fuels with High Critical Compressibility Factor)

  • 김재승;서지완;김규홍
    • 한국추진공학회지
    • /
    • 제26권5호
    • /
    • pp.24-34
    • /
    • 2022
  • 초임계 영역에서 작동하는 탄화수소 연료를 사용하는 재생냉각채널의 냉각성능을 예측하기 위해서는 타당한 물성 예측이 필수이다. 본 연구는 고분자 탄화수소의 임계 압축인자에 따라 밀도와 비열을 적절하게 예측하기 위해 2-파라미터 상태방정식인 SRK(Soave-Redlich-Kwong) 및 PR(Peng-Robinson) 상태방정식과 이를 합한 3-파라미터 상태방정식인 RK-PR 상태방정식에 대한 비교 분석을 수행하였다. 대표적으로 낮은 임계압축 인자를 갖는 n-dodecane 연료와 높은 임계압축 인자를 갖는 JP-10 연료를 선정하여 두 연료의 열역학적 물성을 예측할 때 적합한 상태방정식을 제시하였다. 마지막으로 밀도와 비열의 예측 결과를 NIST REFPROP 데이터와 비교하여 검증하였다.

Application of Procedures to Calculate Thermodynamic Properties of Carbon Dioxide, HFC-134a and HCFC-22

  • Park Hyoung Joon;Park Kyoung Kuhn
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권4호
    • /
    • pp.176-183
    • /
    • 2004
  • Systematic methods to calculate thermodynamic properties of carbon dioxide, HFC-134a and HCFC-22 are presented. First, application of a basic method to identify the saturation state with given temperature or pressure is attempted and the feasibility of auxil­iary equations is tested. Next, detailed procedures are suggested to tell a phase when tem­perature/pressure and another property are specified. Finally the Newton-Raphson method is applied to calculate unknown thermodynamic properties fixing the state with the two inde­pendent properties specified. The procedures described here are utilized to develop a computer program, which is used to find the relation between temperature and pressure with maximum isobaric heat capacity for super-critical carbon dioxide.

이산화탄소, HFC-l34a, HCFC-22의 열역학적 상태량 계산 절차의 응용 (Application of Procedures to Calculate Thermodynamic Properties of Carbon Dioxide, HFC-l34a and HCFC-22)

  • 박형준;박경근
    • 설비공학논문집
    • /
    • 제15권5호
    • /
    • pp.389-396
    • /
    • 2003
  • Systematic methods to calculate thermodynamic properties of carbon dioxide, HFC-l34a and HCFC-22 are presented. First, application of a basic method to identify the saturation state with given temperature or pressure is attempted and the feasibility of auxiliary equations is tested. Next, detailed procedures are suggested to tell a phase when temperature/pressure and another property are specified. Finally Newton-Raphson method is applied to calculate unknown thermodynamic properties fixing the state with the two independent properties specified. The procedures described here are utilized to develop a computer program, which is used to find the relation between temperature and pressure with maximum isobaric heat capacity for super-critical carbon dioxide.

A Review of Surface Energy of Solid Electrodes with Emphasis on Its Controversial Issues in Interfacial Electrochemistry

  • Go Joo-Young;Pyun Su-Il
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.211-219
    • /
    • 2004
  • A classical Lippmann equation valid for liquid electrodes can not describe the interfacial properties of solid electrodes due to the elastic surface strain on solid electrodes. Although there have been many attempts to derive the thermodynamic equations for solid electrodes Outing the past few decades, their validity has been still questioned by many researchers. In practice, although there are various experimental techniques to measure surface energy of solid electrodes, the results obtained by each technique are rather inconsistent due to the complexity of the surface strain on solid electrodes. This article covers these controversial issues in surface energy of solid electrodes. After giving brief summaries of the definition of the important thermodynamic parameters and the derivation of the thermodynamic equations for solid electrodes, the several experimental methods were introduced for the measurement of surface energy of solid electrodes. And then we discussed in detail the inconsistent results in the measurement of the potential of zero charge (pac) and the potential of electrocapillary maximum (ecm).

熱力學 函數間의 直線關係 (第1報) 理論 (Linear Relationships between Thermodynamic Parameters (Part I) Theoretical)

  • 이익춘
    • 대한화학회지
    • /
    • 제7권3호
    • /
    • pp.211-215
    • /
    • 1963
  • Inter-relationship between the Hammett equation and the linear enthalpy-entropy effect has been discussed by deriving a new set of equations; ${\Delta}{\Delata}H^{\neq}=a{\sigma}+b{\Delta}{\Delta}S^{\neq}$ and ${\Delta}{\Delta}F^{\neq}=a{sigma}+(b-T){\Delta}{\Delta}S^{\neq}$ where a = -1.36p. Theoretical analysis show that the Hammett, Leffler and Brown equations are special limited forms of these general equations. A necessary and sufficient test of substituent effect can thus be provided by the plot of $({\Delta}{\Delta}H^{\neq}-a{\sigma)$ versus ${\Delta}{\Delta}S^{\neq}$.

  • PDF

400kw급 IGTB 인버터용 방열 시스템 설계 (Design of Heat Dissipation System for 400kW IGBT Inverter)

  • 이진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.10-14
    • /
    • 2003
  • This paper deals with the design of heat dissipation system using the forced air cooling method. It suggests the method of appropriately dividing the whole thermodynamic system into analytical subsystems and also presents the correspondent analytic or experimental equations to subsystems. The experimental results on the designed thermodynamic system for 400kw 1GBT inverter show the validity of the proposed design method in the steady state.

  • PDF

Dynamics of multilayered viscoelastic beams

  • Roy, H.;Dutt, J.K.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.391-406
    • /
    • 2009
  • Viscoelastic materials store as well as dissipate energy to the thermal domain under deformation. Two efficient modelling techniques reported in literature use coupled (thermo-mechanical) ATF (Augmenting Thermodynamic Fields) displacements and ADF (Anelastic Displacement Fields) displacements, to represent the constitutive relationship in time domain by using certain viscoelastic parameters. Viscoelastic parameters are first extracted from the storage modulus and loss factor normally reported in hand books with the help of Genetic Algorithm and then constitutive relationships are used to obtain the equations of motion of the continuum after discretizing it with finite beam elements. The equations of motion are solved to get the frequency response function and modal damping ratio. The process may be applied to study the dynamic behaviour of composite beams and rotors comprising of several viscoelastic layers. Dynamic behaviour of a composite beam, formed by concentric layers of steel and aluminium is studied as an example.

Thermodynamic Properties of the Polymer Solutions

  • Lee, Woong-Ki;Pak, Hyung- Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권6호
    • /
    • pp.337-343
    • /
    • 1985
  • A statistical mechanical approach to elucidate the solvent effects on the high polymer solutions has been carried out on the basis of the simple model of liquids improved by Pak. In our works, the partition function of the polymer solutions is formulated by the lattice model and our simple treatment of liquid structures. For the ideal polymer solutions proposed by Flory, thermodynamic functions of the polymer solutions are obtained and equations of mixing properties and partial molar quantities are derived from the presented partition function of the polymer solutions. Partial molar quantities are calculated for the rubber solutions in carbon disulfide, benzene and carbon tetrachloride. Comparisons have been made between our equations and those of Flory's original paper for partial molar properties of the rubber-benzene system. Comparing the experimental data of the osmotic pressure of polystyrene-cyclohexane system with our calculated values and those of Flory's, our values fit to the agreeable degrees better than those of Flory's.