• Title/Summary/Keyword: thermo-optic effect

Search Result 42, Processing Time 0.028 seconds

Fiber Optic Temperature Sensor Based on the Thermal Expansion Effect of Fused Optical Fiber Coupler Fixed on a Al Support (알루미늄 지지대에 고정된 융착 광섬유 커플러의 열팽창을 이용한 온도 센서)

  • Kim, Kwang Taek
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.338-341
    • /
    • 2017
  • We have investigated a temperature sensor on a thermal expansion effect of a fused optical fiber coupler. Both side of the fused tapered region of the coupler were fixed on a metal support to induce the high thermal expansion effect. The sensor showed that the peak coupling wavelengths were shifted to shorted wavelength region with increased of environmental temperature. The sensitivity of the sensor was $0.12nm/^{\circ}C$.

Silicon Fabry-Perot Tunable Thermo-Optic Filter (실리콘 파브리-페로 파장가변 열광학 필터)

  • Park, Su-Yeon;Kang, Dong-Heon;Kim, Young-Ho;Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2008
  • A silicon Fabry-Perot tunable thermo-optic filter for WDM using the thin film silicon coating is proposed and experimented. The filter is implemented by using the CMP process and polishing both sides of the commercial silicon wafer with normal thickness of 100${\mu}m{\pm}$1%. The filter also has 2-layer or 3-layer dielectrics thin film coating mirror which are alternated ${\lambda}$/4 layers of $SiO_2$($n_{low}$=1.44) and a-Si($n_{high}$=3.48) for the central wavelength of 1550nm by RF sputtering. The experiment shows that FSR is 3.61nm and FWHM is 0.56nm and the finesse is 6.4 for 2-layer mirror with the reflection of 61%, and that FSR is 3.36nm and FWHM is 0.13nm and the finesse is 25.5 for 3-layer mirror with the reflection of 89%. According to thermo-optic effect, the transmitted central wavelength of 1549.73nm at $23^{\circ}C$ is shifted to 1550.91nm at $30^{\circ}C$ and 1553.46nm at $60^{\circ}C$ for 2-layer mirror, and the transmitted central wavelength of 1549.83nm at $23^{\circ}C$ is shifted to 1550.92nm at $30^{\circ}C$ and 1553.07nm at $60^{\circ}C$ for 3-layer mirror.

  • PDF

Fiber to planar waveguide type tunable comb filter using thermo-optic effect (열광학 효과를 이용한 광섬유 -평면도파로 결합형 파장 가변 빗살필터)

  • 김정훈;권광희;김광택;송재원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.192-193
    • /
    • 2002
  • 지금까지 측면이 코어 가까이 연마된 잔일모드 광섬유와 평면 도파로 사이의 광결합을 이용한 소자들이 많이 연구되고 있다. 이를 이용한 소자들로는 광필터, 광변조기, 광스위치, 굴절계, 편광기 등이 있으며 최근에는 파장분할다중화(WDM)에서 인접채널간의 채널분리를 위한 소자로서 빗살필터의 연구 또한 활발히 이루어지고 있다. 이에 본 논문에서는 측면이 코어 가까이 연마된 단일모드 광섬유와 평면도파로 사이의 광결합을 이용한 빗살필터를 제작하였으며 열광학 효과를 이용하여 파장 가변 빗살 필터를 구현해 보았다. (중략)

  • PDF

Optical coupling propertis between side-polished fiber and metal-clad planar waveguide (측면 연마된 광섬유와 금속 클래드 평면도파로사이의 광결합특성)

  • 허상휴;김광택;이점식;마재평;정웅규;강신원;손경락;송재원
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.253-256
    • /
    • 2000
  • We report the experimental results for the coupling properties of the an side-polished single-mode fiber covered with metal-clad planar waveguide. The experimental results show that the large birefringence of a metal-clad planar waveguide facilitates the effective separation of TE and TM polarization in the spectral domain. Additionally the resonant wavelengths of the device are tuned based in the thermo-optic effect of polymer planar waveguide.

  • PDF

Characteristics of Tunable Filter Using the Thermo-optic Effect (열광학 효과를 이용한 파장 가변 필터의 특성)

  • 박헌용;황병철;이승걸;오범환;이일항;박세근;최두선
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.114-115
    • /
    • 2003
  • 최근 급속히 성장하고 있는 Wavelength-division-multiplexing (WDM) 시스템에 파장가변 필터는 핵심적인 소자로 적용될 수 있으며, 높은 가격 경쟁력과 광학 필터로서 좋은 특성과 높은 가변 특성을 구현할 수 있다. 이러한 파장가변 필터는 multi-beam 간섭을 이용하고, Micro electro mechanical systems (MEMS) 공정 기술인 벌크 마이크로 머시닝 기술을 이용하여 구현되어지고 있다. 또한 파장 가변 필터는 Optical-performance monitoring, Spectrometer, Optical noise filter, Sensor 등 여러 분야에 응용될 수 있다. (중략)

  • PDF

Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization (전극 구조의 최적화를 통한 저전력 열광학 스위치 설계)

  • Choi, Chul-Hyun;Kong, Chang-Kyeng;Lee, Min-Woo;Sung, Jun-Ho;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2009
  • We designed a thermo-optic switch based on a directional coupler with not only a high extinction ratio but also significantly low power consumption. The switch operates by using the thermo-optic effect of the polymer which the refractive index changes by heating the electrode. If the electrode is not powered (OFF), the input light will be coupled completely to the other waveguide. When the electrode is powered at a certain level (ON), input light launched into the input waveguide will remain in that waveguide due to the lower index adjusted in the other waveguide. The switch based on the directional coupler was designed using the generalized extinction ratio curve and the lateral shift of the input waveguide. The coupling length is 1,610 ${\mu}m$ and the extinction ratios are -28 and -30 dB for ON and OFF states, respectively. The electrode structures were optimized by thermal analysis. The transported heat into the waveguide is increased, as the electrode width (w) is increased and the center distance between the electrode and the waveguide (d) is decreased. Also, because the heat generated in the electrode affects the other waveguide, the temperature difference between two waveguides is varied as the given w and d. There are specific conditions which have the maximum of the temperature difference. That of the temperature difference is increased as the width and the temperature of the electrode are increased. Especially, when the switch is designed using the condition with the maximum of the temperature difference for switching, the temperature of the electrode can be decreased. We expect this condition will be the novel method for the reduction of the power consumption in a thermo-optic switch.

Tunable Wavelength Filters Based on Long-Range Surface-Plasmon-Polariton waveguides (금속선 광 도파로를 이용한 장거리 표면-플라즈몬 파장가변 필터)

  • Kim, Ki-Cheol;Song, Seok-Ho;Won, Hyong-Sik;Lee, Gwan-Su
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.371-380
    • /
    • 2006
  • We design and fabricate a novel tunable wavelength filter, which utilizes long-range surface plasmon-polaritons excited along nm-thick-metal strips. A gold metal strip, with $\sim$ cm length, 20 nm thickness, and $\sim$ 5$\mu$m width, is embedded in thick thermo-optic Polymer films supported by a silicon wafer. A dielectric Bragg grating structure is Placed on the metal strip, so that transmission signals at telecom wavelength are selected by thermal effect of the thermo-optic polymer. High extinction ratio of 25 dB and total insertion loss of $\sim$25 dB/cm can be measured by single-mode coupling of optical fibers. We also verify that wavelength tuning of the long-range surface plasmon-polariton filters can be achieved by electric current directly applied to the metal-strip waveguides.

Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan;Lee, Sang-Mae;Jim S. Sirkis
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

Temperature Stabilization of Group Index in Silicon Slotted Photonic Crystal Waveguides

  • Aghababaeian, Hassan;Vadjed-Samiei, Mohammad-Hashem;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.398-402
    • /
    • 2011
  • In this paper, we have proposed a principle to design wideband, low dispersion and temperature stabilized slow light structure in slotted photonic crystal waveguide (SPCW). The infiltration of the silicon photonic crystal with polymer will enhance the slow light and increase the group index, whereas the different signs of thermo-optic coefficients of polymer and silicon make the proposed structure stable on temperature variation over $60^{\circ}C$ and improves the group index-bandwidth products of the designed structure. The SPCW structure is modified to maximize the slow light effect and minimize the dependence of the group index and hence the group velocity dispersion to temperature.

High Performance Polymeric Optical Waveguide Devices (고성능 폴리머 광도파로 소자)

  • O, Min-Cheol;No, Yeong-Uk;Lee, Hyeong-Jong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.02a
    • /
    • pp.292-295
    • /
    • 2005
  • Variable optical attenuators (VOA) made of low-loss fluorinated polymers are demonstrated which shows a low operating power less than 30 mW due to the superior thermo-optic effect of polymer material and a low insertion loss less than 1.0 dB by incorporating highly fluorinated polymers to reduce the absorption loss at 1550 nm. An attenuator-integrated low-crosstalk polymeric digital optical switch (DOS) is also demonstrated. The switch and attenuator shares a single connected electrode which is controlled by a single current source. Due to the simple structure of the integrated attenuator, the device length is reduced to 1 cm so as to provide low insertion loss of 0.8 and 1.1 dB for 1300 and 1550 nm, respectively. The attenuator radiates remained optical signal on the switch-off branch in order to decrease the switching crosstalk to be less than -70 dB with an applied electrical power of 200 mW.

  • PDF