• 제목/요약/키워드: thermo-chemical degradation

검색결과 33건 처리시간 0.024초

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 1. Experimental results

  • Gawin, D.;Alonso, C.;Andrade, C.;Majorana, C.E.;Pesavento, F.
    • Computers and Concrete
    • /
    • 제2권3호
    • /
    • pp.189-202
    • /
    • 2005
  • This paper presents an analysis of some experimental results concerning micro-structural tests, permeability measurements and strain-stress tests of four types of High-Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$). These experimental results, obtained within the "HITECO" research programme are discussed and interpreted in the context of a recently developed mathematical model of hygro-thermal behaviour and degradation of concrete at high temperature, which is briefly presented in the Part 2 paper (Gawin, et al. 2005). Correlations between concrete permeability and porosity micro-structure, as well as between damage and cracks' volume, are found. An approximate decomposition of the thermally induced material damage into two parts, a chemical one related to cement dehydration process, and a thermal one due to micro-cracks' development caused by thermal strains at micro- and meso-scale, is performed. Constitutive relationships describing influence of temperature and material damage upon its intrinsic permeability at high temperature for 4 types of HPC are deduced. In the Part II of this paper (Gawin, et al. 2005) effect of two different damage-permeability coupling formulations on the results of computer simulations concerning hygro-thermo-mechanical performance of concrete wall during standard fire, is numerically analysed.

A Complete, Reductive Depolymerization of Concentrated Sulfuric Acid Hydrolysis Lignin into a High Calorific Bio-oil using Supercritical Ethanol

  • Riaz, Asim;Kim, Jaehoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.447-452
    • /
    • 2016
  • It is imperative to develop an effective pathway to depolymerize lignin into liquid fuel that can be used as a bioheavy oil. Lignin can be converted into liquid products either by a solvent-free thermal cracking in the absence air, or thermo-chemical degradation in the presence of suitable solvents and chemicals. Here we show that the solvent-assisted liquefaction has produced promising results in the presence of metal-based catalysts. The supercritical ethanol is an efficient liquefaction solvent, which not only provides better solubility to lignin, but also scavenges the intermediate species. The concentrated sulfuric acid hydrolysis lignin (CSAHL) was completely liquefied in the presence of solid catalysts (Ni, Pd and Ru) with no char formation. The effective deoxy-liquefaction nature associated with scEtOH with aid hydrodeoxygenation catalysts, resulted in significant reduction in oxygen-to-carbon (O/C) molar ratio up to 61%. The decrease in oxygen content and increase in carbon and hydrogen contents increased the calorific value bio-oil, with higher heating value (HHV) of $34.6MJ{\cdot}Kg^{-1}$. The overall process is energetically efficient with 129.8% energy recovery (ER) and 70.8% energy efficiency (EE). The GC-TOF/MS analysis of bio-oil shows that the bio-oil mainly consists of monomeric species such as phenols, esters, furans, alcohols, and traces of aliphatic hydrocarbons. The bio-oil produced has better flow properties, low molecular weight, and high aromaticity.

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Investigation on nanoadhesive bonding of plasma modified titanium for aerospace application

  • Ahmed, Sabbir;Chakrabarty, Debabrata;Mukherjee, Subroto;Joseph, Alphonsa;Jhala, Ghanshyam;Bhowmik, Shantanu
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Physico-chemical changes of the plasma modified titanium alloy [Ti-6Al-4V] surface were studied with respect to their crystallographic changes by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM).The plasma-treatment of surface was carried out to enhance adhesion of high performance nano reinforced epoxy adhesive, a phenomenon that was manifested in subsequent experimental results. The enhancement of adhesion as a consequence of improved spreading and wetting on metal surface was studied by contact angle (sessile drop method) and surface energy determination, which shows a distinct increase in polar component of surface energy. The synergism in bond strength was established by analyzing the lap-shear strength of titanium laminate. The extent of enhancement in thermal stability of the dispersed nanosilica particles reinforced epoxy adhesive was studied by Thermo Gravimetric Analysis (TGA), which shows an increase in onset of degradation and high amount of residuals at the high temperature range under study. The fractured surfaces of the joint were examined by Scanning electron microscope (SEM).

바이오매스의 Fast Pyrolysis 공정과 Bio-Oil의 특성 (Review on the East Pyrolysis of Biomass and Characteristics of Bio-Oil)

  • 명소영;박영권;전종기;김주식
    • 자원리싸이클링
    • /
    • 제13권1호
    • /
    • pp.3-13
    • /
    • 2004
  • 바이오매스의 이용은 과거부터 지속되어 왔지만 최근 들어 새로운 대체에너지로의 활용이라는 측면에서 집중적인 연구가 시도되고 있다. 바이오매스를 이용하는 방법으로서의 fast pyrolysis는 다른 방법들보다 고부가가치의 화학물질을 생성할 수 있다는 점에서 크게 주목을 받고 있다. 이 리뷰 논문은 현재 fast pyrolysis를 바이오매스 전환 공정으로 이용하고 있는 실례를 선보이고 그 공정에서 생산되는 생성물인 bio-oil의 특성을 소개하고 있다.

Analysis of Surface Tracking of Micro and Nano Size Alumina Filled Silicone Rubber for High Voltage AC Transmission

  • Loganathan, N.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.345-353
    • /
    • 2013
  • This paper discusses the experimental results in an effort to understand the tracking and erosion resistance of the micro and nano size $Al_2O_3$ filled silicone rubber (SIR) material which has been studied under the AC voltages, with ammonium chloride as a contaminant, as per IEC 60587 test procedures. The characteristic changes in the tracking resistance of the micro and nano size filled specimens were analyzed through leakage current measurement and the eroded masses were used to evaluate the relative erosion and tracking resistance of the composites. The fundamental, third and fifth harmonic of the leakage current during the tracking study were analyzed using moving average current technique. It was observed that the harmonic components of leakage current show good correlation with the tracking and erosion resistance of the material. The thermogravimetry-derivative thermo gravimetric (TG-DTG) studies were performed to understand the thermal degradation of the composites. The physical and chemical studies were carried out by using scanning electron microscope (SEM), Energy Dispersive X-ray analysis (EDAX) and Fourier Transform Infra-red (FTIR) Spectroscopy. The obtained result indicated that the performance of nano filled SIR was better than the micro filled SIR material when the % wt. of filler increased.

Urushiol의 화학적 변화를 통한 건칠(乾漆)의 포제법(炮製法) 고찰 (Chemical change of urushiol during heating process of Toxicodendron vernicifluum resin)

  • 김정훈;도의정;이금산
    • 대한본초학회지
    • /
    • 제35권2호
    • /
    • pp.1-6
    • /
    • 2020
  • Objectives : Heating process is the traditional processing method that has been applied to reduce the toxicity of dried resin of Toxicodendron vernicifluum (Anacardiacea) used as Geon-chil (乾漆, Lacca Rhois Exsiccata or Toxicodendri Resina). Urushiol, which is found in the plants of Toxicodendron genus, is a toxic compound that is absorbed into the skin and induces allergic dermatitis by being contacted. Hence, the reduction of urushiol level by heating processing of Geon-chil is crucial method for its medicinal application. Methods : Due to lack of Geon-chil processing-related articles, the articles researching the processing of lacquer (漆), as a coating material, were collected and analyzed to investigate the chemical change of urushiol during heating process. Results : The results demonstrate that the resin which was collected from the sap of T. vernicifluum tree was dried under warm and humid conditions repeatedly. During primary drying process, the laccase, a copper-containing enzyme in the resin, participated in the formation of urushiol polymers and thereafter urushiol-related toxicity could be reduced by making a lacquer harder and more stable. Moreover, heating a lacquer over 200℃ could cause thermo-degradation of urushiol polymers, and vaporized thermally degraded urushiol monomers and their by-products, which were determined using pyrolysis/GC-MS. Conclusions : These results support that heating process being performed over 200 ℃, such as stir-frying (炒) or calcination (煅), reduces the urushiol content in Geon-chil and hence, its medicinal use can be more stable without urushiol-related allergic reactions.

초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가 (Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process)

  • 양준모;김석윤;한지현;정인일;유종훈;임교빈
    • KSBB Journal
    • /
    • 제21권2호
    • /
    • pp.157-163
    • /
    • 2006
  • 본 연구에서는 초임계 ASES 공정을 이용하여 인체내 및 피부에 여러 가지로 유익한 대표적 생리활성물질인 Vitamin-C의 불안정성을 극복하기 위하여 HP-${\beta}$-CD와의 포접복합체를 제조하여 수용액상에서의 안정성을 분석하였다. X-선 회절을 이용한 Vitamin-C와 HP-${\beta}$-CD의 결정성 분석으로 초임계 ASES 공정을 통하여 포접복합체가 용이하게 형성될 수 있음을 확인하였다. HP-${\beta}$-CD가 Vitamin-C의 안정성을 향상시키는 방법으로 이용될 수 있음을 확인하였으며, $25{\pm}0.1^{\circ}C$의 온도를 유지한 pH 7.0의 50 mM 인산완충용액 상에서 순수한 Vitamin-C, 물리적인 혼합물 및 용매증발법과 초임계 ASES 공정을 이용하여 제조된 포접복합체의 Vitamin-C 겉보기 1차 분해 속도 상수는 각각 $1.45{\times}10^{-2}h^{-1},\;1.41{\times}10^{-2}h^{-1},\;1.34{\times}10^{-2}h^{-1},\;0.20{\times}10^{-2}h^{-1}$로 초임계 ASES 공정으로 제조된 포접복합체의 경우 Vitamin-C의 안정성이 매우 크게 향상되는 것을 확인하였다.

페놀계 산화방지제에 의한 비결정성 올레핀 수지의 황변 거동 (Effect of Phenolic Antioxidants System on Yellowing of Amorphous Poly-α-olefin)

  • 김시용;김호겸;박상철;민경은
    • 폴리머
    • /
    • 제37권2호
    • /
    • pp.156-161
    • /
    • 2013
  • 페놀계 산화방지제는 가공 및 사용 시 열분해를 방지함으로써 뛰어난 열 안정성을 제공하는 대표적인 1차 산화방지제이다. 그러나 NOx 가스를 포함한 특정 환경에 의해 황변이 일어나기 쉽기 때문에 2차 산화방지제를 추가로 도입하여 시너지효과를 기대하는 경우가 많다. 열에 취약한 비결정성 폴리알파올레핀 수지(APAO)에 여러 가지 페놀계 1차 및 2차 산화방지제를 도입하여 황변 여부를 조사한 결과 2차 산화방지제의 함량이 증가할수록 황변이 줄어들었으며 BHT와 같은 단순 구조의 폐놀계 산화방지제보다 긴 알킬 사슬을 도입시켜 입체장애효과를 증대시킨 산화방지제가 2차 산화방지제와의 시너지 효과가 더 큰 것으로 확인되었다.

디메틸에테르 초임계 유체를 이용한 고분자량 폴리락티드 스테레오 콤플렉스의 제조 (A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether)

  • 굴나즈비비;정영미;임종주;김수현
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.453-460
    • /
    • 2015
  • 초임계 유체 기술을 이용한 폴리락티드 스테레오 콤플렉스 제조는 폴리락티드의 열적 및 기계적 물성을 향상시키는 좋은 방법이다. 이 연구에서는 초임계 유체인 디메틸에테르를 이용하여 고분자량 폴리락티드를 높은 수율로 100% 스테레오 콤플렉스화를 시켰다. 폴리락티드에 대한 디메틸에테르의 높은 용해성은 이 공정의 핵심요소로 250 bar, $70^{\circ}C$, 1.5시간에 반응이 종료되었다. 폴리락티드의 스테레오 콤플렉스 연구는 압력, 온도, 시간, 농도 및 분자량을 변화시키며 진행하였다. 스테레오 콤플렉스화는 온도와 압력이 증가할 때 높아졌다. 분자량 20만 이상인 PLLA와 PDLA는 6%의 디메틸에테르에서 100% 스테레오 콤플렉스화가 이루어졌다. 스테레오 콤플렉스화 정도는 DSC 및 XRD를 통해 이루어졌다. 또한 DSC 및 TGA 분석을 통해 융점이 $50^{\circ}C$ 이상 높아진 폴리락티드가 얻어졌음을 확인하였다.