• Title/Summary/Keyword: thermal-cycling

Search Result 311, Processing Time 0.023 seconds

Practical Application of Sn-3.0Ag-0.5Cu Lead Free Solder in Electronic Production

  • Chae Kyu-Sang;Min Jae-Sang;Kim Ik-Joo;Cho Il-Je
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.65-71
    • /
    • 2005
  • At present, Electronic industries push ahead to eliminate the Pb(Lead) -a hazardous material-from all products. Especially, we have performed to select the optimum standard composition of lead free alloy for the application to products for about 3 years from 2000. These days, we have the chance for applying to the mass-production. This project constructed the system for applying the lead free solders on consumer electronic products, which is one of the major products of the LG Electronics. To select the lead free solders with corresponding to the product features, we have passed through the test and applied with Sn-3.0Ag-0.5Cu alloy system to our products, and for the application to the high melting temperature composition, we secured the thermal resistance of the many parts and substrate and optimized the processing conditions. We have operated the temperature cycling test and the high temperature storage test under the standards to confirm the reliability of the products. On these samples, we considered the consequence of our decision by the operating test. For the long life time of the product, we have operated the temperature cycling test at $-45^{\circ}C\;-\;+125^{\circ}C$, 1 cycle/hour, 1000 cycles. Also we have tested the tin whisker growth about lead free plating on lead finish. We have analyzed with the SEM, EDS and any other equipment for confirming the failure mode at the joint and the tin whisker growth on lead free finish.

  • PDF

A Study on the Electrochemical Properties for Effect of Additive of the Lithium Metal Anode (리튬 금속 음극의 첨가제 효과에 따른 전기 화학적 특성에 관한 연구)

  • Cho, S.M.;Lee, S.W.;Cho, B.W.;Ju, J.B.;Sohn, T.W.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.159-163
    • /
    • 2002
  • The use of lithium metal anode at lithium metal secondary battery can provide the very high energy density. Nevertheless, there are some problems that are short cycle life, lack of safety and poor thermal stability. Cycle life and cycling efficiency decline due to passivating films, dendritic lithium and increasing surface film by the reaction of lithium metal and electrolyte. This work investigated the additive effect of benzene, toluene, tetram-ethylethylenediamine, into the electrolyte. The cycling efficiency and cyclability are improved. The reason is confirmed by decreasing film resistance and increasing polarization resistance at AC impedance analysis. Electrolyte additive has a relatively less reactivity than electrolytes lithium and is adsorbed on lithium leading to suppression of the reaction between the electrolyte and lithium as well as an improvement in the lithium deposition mophology.

A Study on Tensile Properties of CFRP Composites under Cryogenic Environment (극저온 환경에서 탄소섬유강화 복합재의 인장 물성에 관한 연구)

  • Kim Myung-Gon;Kang Sang-Guk;Kim Chun-Gon;Kong Cheol-Won
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.52-57
    • /
    • 2004
  • In this study, mechanical tensile properties of carbon fiber reinforced polymeric (CFRP) composite cycled with thermo-mechanical loading under cryogenic temperature (CT) were measured using cryogenic environmental chamber. Thermo-mechanical tensile cyclic loading (up to 10 times) was applied to graphite/epoxy unidirectional laminate composites far room temperature (RT) to $-50^{\circ}C$, RT to $-100^{\circ}C$ and RT to $-150^{\circ}C$. Results showed that tensile stiffness obviously increased as temperature decreased while the thermo-mechanical cycling has little influence on it. Tensile strength, however, decreased as temperature down to CT while the reduction of strength showed little after CT-cycling. For the analysis of the test results, coefficient of thermal expansion (CTE) of laminate composite specimen at both RT and CT were measured and the interface between fiber and matrix was observed using SEM images.

Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries (리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성)

  • Kim, Eunji;Lee, Albert S.;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.467-471
    • /
    • 2021
  • A ladder-like polysilsesquioxane (LPMA64) functionalized with a crosslinkable group was synthesized and used for the preparation of organic-inorganic hybrid gel polymer electrolytes through a thermal crosslinking process of the liquid electrolytes. A small weight percent of LPMA64 polymer crosslinker (5 wt%) was able to form a well-developed network structure, resulting in good dimensional stability with high ionic conductivity. The lithium-sulfur batteries fabricated with organic-inorganic hybrid gel polymer electrolytes exhibited stable C-rate and cycling performance with excellent Coulombic efficiency due to the alleviated lithium polysulfide shuttling effect during prolonged cycling. The result demonstrates that the organic-inorganic hybrid gel polymer electrolytes could be a promising candidate electrolyte for application in lithium-sulfur batteries.

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

Controlling the Diameter Size of Carbon Nanofilaments by the Cyclic on/off Modulation of C2H2/H2/SF6 Flow in a Thermal Chemical Vapor Deposition System (C2H2/H2/SF6 기체들의 싸이클릭 유량 변조를 통한 탄소 나노 필라멘트 직경크기 조절)

  • Kim, Kwang-Duk;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.481-487
    • /
    • 2009
  • To control the diameter size of the carbon nanofilaments (CNFs), SF6 was incorporated in the source gases ($C_2H_2/H_2$) during the initial deposition stage. The source gases and $SF_6$ were manipulated as the cyclic on/off modulation of $C_2H_2/H_2/SF_6$ flow in a thermal chemical vapor deposition system. The characteristics of the CNFs formation on the substrate were investigated according to the different cyclic modulation processes and the substrate temperatures. By $SF_6\;+\;H_2$ flow injection during the cycling etching interval time, the diameter size of CNFs was extremely decreased. The cause for the decrease in the diameter size of the individual CNFs by the cyclic on/off modulation process of $C_2H_2/H_2/SF_6$ flow was discussed in association with the slightly enhanced etching ability by the incorporation of $SF_6$.

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju;Jin, Bong-Soo;Doh, Chil-Hoon;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.

The effect of temperature changes on force level of superelastic nickel-titanium archwires (온도 변화가 교정용 니켈-티타늄 호선의 하중값에 미치는 영향)

  • Chun, Kyoung-Ae;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.432-439
    • /
    • 2007
  • The purpose of this study was to evaluate the influence of intraoral temperature changes on the orthodontic force level of a superelastic nickel-titanium alloy wire. Methods: Nickel-titanium archwires of $0.016"{\times}0.022"$ thickness were tested with a three point bending test setup, and temperature changes were applied. The force level changes according to temperature changes were measured at a 1.5 mm deflection during the loading phase and a 1.5 mm deflection during the unloading phase from a deflection to 3.1mm. Ten cycles of thermal cycling from baseline $(37^{\circ}C)$ to cold $(20^{\circ}C)$ or hot $(50^{\circ}C)$temperature were applied. Results: Alter thermal cycling, the force level during the loading phase decreased and the force level during the unloading phase increased even after the temperature was changed to the initial $37^{\circ}C$. Conclusions: The results suggest that the orthodontic force level can not return to the initial force level after temperature changes. When applying superelastic nickel-titanium archwires, we must consider that a lighter force than the loading force and a heavier force than the unloading force will be applied after intraoral temperature changes caused by eating and drinking.

Effect of Non-Conducting Filler Additions on Anisotropic Conductive Adhesives(ACAs) Properties and the Reliability of ACAs Flip Chip on Organic Substrates (이방성 전도 접착제 물성과 유기 기판 플립 칩의 신뢰성에 미치는 비전도성 충진재의 영향)

  • Im, Myeong-Jin;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2000
  • We investigated the effect of filler content on the thermo-mechanical properties of modified ACA composite materials by incorporation of non-conducting fillers and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. For the characterization of modified ACA s composites with different content of non-conducting fillers, differential scanning calorimeter (DSC), and thermo-gravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), and thermo-mechnical analyzer (TMA) were utilized. As the non-conducting filler content increased, CTE values decreased and storage modulus at room temperature increased. In addition, the increase in the content of filler brought about the increase of Tg^{DSC}$ and $Tg^{TMA}$. However, the TGA behaviors stayed almost the same. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers.

  • PDF

Joining properties and thermal cycling reliability of the Si die-attached joint with Zn-Sn-based high-temperature lead-free solders (Zn-Sn계 고온용 무연솔더를 이용한 Si다이접합부의 접합특성 및 열피로특성)

  • Kim, Seong-Jun;Kim, Keun-Soo;Suganuma, Katsuaki
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.72-72
    • /
    • 2009
  • 전자부품의 내부접속 및 파워반도체의 다이본딩과 같은 1차실장에는 고온환경에서의 사용과 2차실장에서의 재용융방지를 위해 높은 액상선온도 및 고상선온도를 필요로 하여, Pb-5wt%Sn, Pb-2.5wt%Ag로 대표되는 납성분 85%이상의 고온솔더가 널리 사용되고 있다. 생태계와 인체에 대한 납의 유해성이 보고된 이래, 무연솔더에 대한 연구가 활발히 진행되어 왔으나, Sn-Ag-Cu계로 대표되는 Sn계 합금으로 대체 중인 중온용 솔더와는 달리, 고온용 솔더에 대해서는 대체합금에 대한 연구가 미흡한 실정이다. 대체재의 부재로 인해 기존의 납을 다량함유한 솔더로 1차실장이 지속됨으로서, 2차실장의 무연화에도 불구하고 전자부품 및 기기의 재활용에 큰 어려움을 겪고 있다. 지금까지 고온용 무연솔더로서는 융점에 근거해 Au-(Sn, Ge, Si)계, Bi-Ag계, Zn-(Al, Sn)계의 극히 제한된 합금계만이 보고되어 왔다. Au계 솔더는 현재 플럭스를 사용하지 않는 광학, 디스플레이 분야 등 고부가가치 공정에 사용되고 있으나, 합금가격이 매우 비싸며 가공성이 나빠 대체재료로서는 적합하지 않다. Bi-Ag계 솔더 또한 취성합금으로 와이어 및 박판으로 가공하는데 어려움이 크며, 솔더로서 중요한 특성중 하나인 전기전도도 및 열전도도가 나쁜 편이다. 이에 비해, Zn계 합금은 비교적 낮은 합금가격, 적절한 가공성과 뛰어난 인장강도, 우수한 전기전도도 및 열전도도를 지녀, 고온용솔더 대체재료의 유력한 후보로 생각된다.이전 연구에서, 필자의 연구그룹은 Zn-Sn계 합금을 고온용 무연솔더로서 제안한 바 있다. Zn-Sn계 합금은 충분히 높은 융점과 함께, 금속간화합물이 없는 미세조직, 우수한 기계적 특성, 높은 전기전도도 및 열전도도 등의 장점을 나타내었다. 본 연구에서는 기초합금특성상 고온솔더로서 다양한 장점을 지닌 Zn-30wt%Sn합금을 고온용 솔더의 대표적인 적용의 하나인 다이본딩에 적용하여, 접합부의 강도 및 미세조직, 열피로 신뢰성에 대해 분석을 함으로서 실제 공정에의 적용가능성에 대해 검토하였다. Zn-30wt%Sn을 이용해 Au/TiN(Titanium nitride) 코팅한 Si다이를 AlN-DBC(aluminum nitride-direct bonded copper)기판에 접합한 결과, 양측에 완전히 젖은 기공이 없는 양호한 다이접합부를 얻었으며, 솔더내부에는 금속간화합물을 형성하지 않았다. Si다이와의 계면에는 TiN만이 존재하였으며, Cu와의 계면에는 Cu로부터 $Cu_5Zn_8,\;CuZn_5$의 반응층을 형성하였다. 온도사이클시험을 통한 열피로특성평가에서, Zn-30wt%Sn를 이용한 다이접합부는 1500사이클 지점에서 Cu와 Cu-Zn금속간화합물의 사이에서 피로균열이 형성되며, 접합강도가 크게 감소하였다. 열피로특성 향상을 위해 Cu표면에 TiN코팅을 하여 Zn-30wt%Sn 솔더로 다이접합한 결과, Si다이와 기판 양측에 TiN만으로 구성된 계면을 형성하였으며, TEM관찰을 통해 Zn-30wt%Sn과 극히 미세한 접합계면이 형성하고 있음을 확인하였다. Zn-wt%30Sn솔더와 TiN층의 병용으로 2000사이클까지 미세조직의 변화 및 강도저하가 없는 극히 안정된 고신뢰성의 다이접합부를 얻을 수가 있었다.

  • PDF