• Title/Summary/Keyword: thermal time constant

Search Result 308, Processing Time 0.023 seconds

A Study on the Dynamic Stress Analysis of an Engine Block using Flexible-body Dynamic Analysis (유연체 동역학적 해석을 이용한 엔진블록의 동응력 해석에 관한 연구)

  • Son, Chang-Su;Cheon, Ho-Jeong;Seong, Hwal-Gyeong;Yoon, Keon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.805-813
    • /
    • 2011
  • The dynamic stress of the diesel engine block is analyzed by using flexible-body dynamic analysis. Multiple loadings including the pressure load due to gas combustion, thermal load, and dynamic load are considered. Thermal load is assumed constant, however, pressure load and dynamic load are treated as time dependent. The present work is focused on the dynamic stress analysis, especially on finding critical points of the engine block. The analysis model includes four parts - engine block, generator, bed, and mounts. On the other hand, crank shaft, pistons, and main bearings are excluded from the model. However, their dynamic effects are applied by dynamic forces, obtained in the separate analysis. Dynamic stress is found by using flexible body dynamic analysis, and compared to the measured data.

Variation in IR Absorption Characteristics of a Bolometer by Resistive Hole-array Patterns (저항성 홀배열이 적용된 볼로미터의 적외선 흡수 특성 변화)

  • Kim, Tae Hyun;Oh, Jaesub;Park, Jongcheol;Kim, Hee Yeoun;Lee, Jong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.306-310
    • /
    • 2018
  • In order to develop a highly sensitive infrared sensor, it is necessary to develop techniques for decreasing the rate of heat absorption and the transition of the absorption wavelength to a longer wavelength, both of which can be induced by decreasing the pixel size of the bolometer. Therefore, in this study, $1{\mu}m$ hole-arrays with a subwavelength smaller than the incident infrared wavelength were formed on the amorphous silicon-based microbolometer pixels in the absorber, which consisted of a TiN absorption layer, an a-Si resistance layer and a SiNx membrane support layer. We demonstrated that it is possible to reduce the thermal time constant by 16% relative to the hole-patternless bolometer, and that it is possible to shift the absorption peak to a shorter wavelength as well as increase absorption in the $4-8{\mu}m$ band to compensate for the infrared long-wavelength transition. These results demonstrate the potential for a new approach to improve the performance of high-resolution microbolometers.

Fundamental behavior of CFT beam-columns under fire loading

  • Varma, Amit H.;Hong, Sangdo;Choe, Lisa
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.679-703
    • /
    • 2013
  • This paper presents experimental investigations of the fundamental behavior of concrete filled steel tube (CFT) beam-columns under fire loading. A total of thirteen specimens were tested to determine the axial force-moment-curvature-temperature behavior of CFT beam-columns. The experimental approach involved the use of: (a) innovative heating and control equipment to apply thermal loading and (b) digital image correlation with close-range photogrammetry to measure the deformations (e.g., curvature) of the heated region. Each specimen was sequentially subjected to: (i) constant axial loading; (ii) thermal loading in the expected plastic hinge region following the ASTM E119 temperature-time T-t curve; and (iii) monotonically increasing flexural loading. The effects of various parameters on the strength and stiffness of CFT beam-columns were evaluated. The parameters considered were the steel tube width, width-tothickness ratio, concrete strength, maximum surface temperature of the steel tube, and the axial load level on the composite CFT section. The experimental results provide knowledge of the fundamental behavior of composite CFT beam-columns, and can be used to calibrate analytical models or macro finite element models developed for predicting behavior of CFT members and frames under fire loading.

Turbulent Dispersion Behavior of a Jet Issued into Thermally Stratified Cross Flows(I) (열적으로 성층화된 횡단류에 분출된 제트의 난류확산 거동(I))

  • Kim, Kyung Chun;Kim, Sang Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.218-225
    • /
    • 1999
  • Flow visualization study has been conducted to simulate the turbulent dispersion behavior of a crossflow jet physically under the conditions of various thermal stratification in a wind tunnel. A smoke jet with the constant ratio of the jet to freestream velocity is injected normally to the cross flow of the thermally stratified wind tunnel(TSWT) for flow visualization. The typical natures of the smoke dispersion under different thermal stratifications such as neutral, weakly stable, strongly stable, weakly unstable, strongly unstable and inversion layer are successfully reproduced in the TSWT. The Instantaneous velocity and temperature fluctuations are measured by using a cold and hot-wire combination probe. The time averaged dispersion behaviors, the centerline trajectories, the spreading angles and the virtual origins of the cross jet are deduced from the edge detected images with respect to the stability parameter. All the general characteristics of the turbulent dispersion behavior reveal that the definitely different dispersion mechanisms are inherent in both stable and unstable conditions. It is conjectured that the turbulent statistics obtained in the various stability conditions quantitatively demonstrate the vertical scalar flux plays a key role in the turbulent dispersion behavior.

Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium

  • KIM JONGSOO;BALSARA DINSHAW;MAC LOW MORDECAI-MARK
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.333-335
    • /
    • 2001
  • We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the $B-p^n$ relation is consistent with observed values.

  • PDF

Processing of Polyurethane/polystyrene Hybrid Foam and Numerical Simulation

  • Lee, Won Ho;Lee, Seok Won;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.159-168
    • /
    • 2002
  • Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

Temperature Changes in Dentin upon Pulsed Nd:YAG Lasing Distance (Pulsed Nd:YAG 레이저 조사거리에 따른 상아질의 온도변화)

  • Jae-Hyung Kim;Woo-Cheon Kee
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.2
    • /
    • pp.327-334
    • /
    • 1995
  • In order to observe the influence of pulsed Nd:YAG laser at its out-of-contact with dentin on tooth temperature, we have applied pulsed Nd:YAG laser to 2mm thick dentin sample at a point of contact and from a distance of 1mm, 2mm, 3mm and 4mm with an energy of 0.3W, 0.5W, 0.8W, 1.5W and 2.0W. They were exposed to periods of 3 seconds, 6 seconds, 9 seconds and 15 seconds respectively and measured temperature changes. The results as follows : 1. When the time ad intensity of power were constant, the temperature changes on dentin of tooth depended on the distance. The temperature increased when the laser intensity increased bu two other conditions were contact. 2. At the point of contact, the temperature has risen over $5^{\circ}C$ regrdless of intensity of the power or the time. However, there was $5^{\circ}C$ fluctuation with 0.3 W for 3 seconds treatment. 3. The temperature change was less than $5^{\circ}C$ thermal change at the distance of 1mm and 2mm respectively when lased for 3 seconds, 6 seconds, 12 seconds and 15 seconds with 0.3 W. Similar results were observed at 3 and 6 seconds treatment with 0.5 W and at 3 seconds treatment with 0.8 and 1.0W respectively. 4. It showed less than 5(C thermal change when lased for 3 seconds, 6 seconds, 9 seconds, 12 seconds and 15 seconds with 0.3W at the distance of 3mm and 4mm. The same results were seen in 3 seconds, 6 seconds and 9 seconds treatment with 0.5W and in 3 seconds with 0.8W and 1.0W respectively. As we have seen the above, the results has indicated that pulsed Nd:YAG lasing at its off contact on dentin of 2mm thickness will not cause irreversible changes if lasing intensity, lasing distance and lasing time are appropriate.

  • PDF

Electrical properties of $Pb(Zr_xTi_{1-x})O_3$ferroelectric thin films prepared by sol-gel processing (Sol-gel법에 의한 $Pb(Zr_xTi_{1-x})O_3$ 강유전 박막의 전기특성)

  • 백동수;박창엽
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.132-137
    • /
    • 1996
  • Pb(Zr$_{x}$Ti$_{1-x}$ )O$_{3}$ solutions prepared by sol-gel processing with different Zr/Ti ratio were coated on Pt/SiO$_{2}$/Si substrates using spin coating method. Coated films were annealed by rapid thermal annealing at 650.deg. C for 20sec to fabricate Pb(Zr, Ti)O$_{3}$ ferroelectric thin films. Electrical properties of the films such as dielectric constant and loss, ferroelectric hysteresis, fatigue, switching time, and leakage current were measured. Hysteresis of the films with different Zr/Ti ratio yield Pr ranging 10-21.mu.C/cm$^{2}$, E$_{c}$ ranging 37.5-137.5kV/cm. Hysteresis curve was changed from square-type to slim type according to increasing Zr contents. Switching time was faster than 180ns, and leakage current was about 20.mu.A/cm$^{2}$. The film underwent above 10$^{8}$ cycles of reversed polarization showed fatigue with increased coercive field and decreased remnant polarization.tion.

  • PDF

Numerical Investigation on Soot Primary Particle Size Using Time Resolved Laser Induced Incandescence (TIRE-LII) (TIRE-LII 기법을 이용한 매연 입자 크기에 관한 수치적 연구)

  • Kim, Jeong-Yong;Lee, Jong-Ho;Jeong, Dong-Soo;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1152-1157
    • /
    • 2004
  • Temporal behavior of the laser induced incandescence (LII) signal is often used for soot particle sizing, which is possible because the cooling behavior of a laser heated particle is dependent on the particle size. In present study, LII signals of soot particles are modeled using two non-linear coupled differential equations deduced from the energy- and mass-balance of the process. The objective of this study is to see the effects of particle size, laser fluence on soot temperature characteristics and cooling behavior. Together with this, we focus on validating our simulation code by comparing with other previous results. Results of normalized LII signals obtained from various laser fluence conditions showed a good agreement with that of Dalzell and Sarofim's. It could be found that small particles cool faster at a constant laser fluence. And it also could be observed that vaporization is dominant process of heat loss during first 100ns after laser pulse, then heat conduction played most important role while thermal radiation had little influence all the time.

  • PDF

Numerical study on extinction of premixed flames using local flame properties (국소화염특성을 고려한 예혼합화염의 소염특성에 관한 수치해석)

  • Jeong, Dae-Heon;Jeong, Seok-Ho;Cho, P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.125-131
    • /
    • 1997
  • The extinction of premixed flames under the influence of stretch is studied numerically. A wide range of fuel (hydrogen, ethylene, acetylene, methane, propane and methanol) and air mixtures are established in an opposed jet and their flame properties such as flame speed, flame thickness, thermal diffusivity, and stretch rate at extinction are computed. Computations are made using several chemical kinetic mechanism (Smooke, Kee et al. and Peters). The major result is that, in contrast to the various previous claims of extinction Karlovitz number varying over three orders of magnitude, it is found to be constant around two for all of the mixtures tested. That is, premixed flames are extinguished when the physical flow time decreases (due to increased stretch rate) to the point where it approximately equals the chemical reaction time. Here the relevant chemical reaction time is not the one computed using the one-dimensional flame properties as originally suggested in the formulation of Karlovitz number, but rather it is the one obtained using the stretched flame properties which fully reflect the effect of straining on the flame structure.