• Title/Summary/Keyword: thermal stress

Search Result 3,010, Processing Time 0.031 seconds

Experimental study to enhance cooling effects on total-coverage combustor wall (연소기 내벽의 전면 막냉각 사용시 효율 증대에 관한 연구)

  • Cho, Hyung-Hee;Goldstein, Richard J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 1997
  • The present study investigates heat/mass transfer for flow through perforated plates for application to combustor wall and turbine blade film cooling. The experiments are conducted for hole length to diameter ratios of 0.68 to 1.5, for hole pitch-to-diameter ratios of 1.5 and 3.0, for gap distance between two parallel perforated plates of 1 to 3 hole diameters, and for Reynolds numbers of 60 to 13, 700. Local heat/mass transfer coefficients near and inside the cooling holes are obtained using a naphthalene sublimation technique. Detailed knowledge of the local transfer coefficients is essential to analyze thermal stress in turbine components. The results indicate that the heat/mass transfer coefficients inside the hole surface vary significantly due to flow separation and reattachment. The transfer coefficient near the reattachment point is about four and half times that for a fully developed circular tube flow. The heat/mass transfer coefficient on the leeward surface has the same order as that on the windward surface because of a strong recirculation flow between neighboring jets from the array of holes. For flow through two perforated plate layers, the transfer coefficients on the target surface (windward surface of the second wall) affected by the gap spacing are approximately three to four times higher than that with a single layer.

A Study on Design Development of Environment-friendly Mobile Home Sauna (친환경 모바일 홈 사우나 디자인 개발에 관한 연구)

  • Lee, Bong Kyu
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.1
    • /
    • pp.77-91
    • /
    • 2015
  • The appeal of sauna is caused by the fact that through that, one can feel Korea's unique temperament and culture; however, because of its being a public facility and flooding of businesses due to excessive supplies of various additional features such as washing, playing, eating, sleeping and health care functions, issues of social resources and environment come to the fore, so it has reached a situation of red ocean that it is difficult to enter the market anymore. Taking these into account, this study focused on developing a thermal technology and design of the housing of an environment-friendly mobile home sauna, making the most use of the sauna's fundamental purpose and settling it as a tourist product, analyzing the marketing research on the existing sauna and considering the recent housing trends and lifestyles for a new concept sauna. Thus, regarding its characteristics and utilization, it was designed smaller than $10m^2$ (3 pyeong) so that it would be easy to install in any space and convenient to move. It can be installed in separate buildings and rest spaces such as country houses, resorts, pensions, camping grounds as well as outdoor houses, custom produced for a measure of pyeong that customers want so as to match up with the Enforcement Ordinance of the Agricultural Land Act in a concept of the farmer's hut and kitchen, bathroom and bathroom can be installed inside according to an option. In addition, regarding its efficacy, in order to give environment-friendly healing effects, materials such as Hinoki Cypress, red clay and hardwood charcoal were used, a fixed indoor temperature of $70{\sim}100^{\circ}C$ was maintained by heating methods such as electromagnetic wave free, energy saving and low-power boiler, and it was made to have excellent effects on fatigue recovery, relieving stress, skin care and diet through far-infrared emission.

ANALYSIS OF THE EFFECT OF HYDROXYL GROUPS IN SILICON DIRECT BONDING USING FT-IR (규소 기판 접합에 있어서 FT-IR을 이용한 수산화기의 영향에 관한 해석)

  • Park, Se-Kwang;Kwon, Ki-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.74-80
    • /
    • 1994
  • Silicon direct bonding technology is very attractive for both silicon-on-insulator devices and sensor fabrication because of its thermal stress free structure and stability. The process of SDB includes hydration of silicon wafer and heat treatment in a wet oxidation furnace. After hydration process, hydroxyl groups of silicon wafer were analyzed by using Fourier transformation-infrared spectroscopy. In case of hydrophilic treatment using a ($H_{2}O_{2}\;:\;H_{2}SO_{4}$) solution, hydroxyl groups are observed in a broad band around the 3474 $cm^{-1}$ region. However, hydroxyl groups do not appear in case of diluted HF solution. The bonded wafer was etched by using tetramethylammonium hydroxide etchant. The surface of the self etch-stopped silicon dioxide is completely flat, so that it can be used as sensor applications such as pressure, flow and acceleration, etc..

  • PDF

Enhancement of Surface Hardness of Stainless Steel by Laser Peening (레이저피닝을 이용한 스테인리스강의 표면 경도 강화)

  • Lim, H.T.;Lee, M.H.;Kim, P.K.;Park, J.B.;Jeong, S.H.
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.18-22
    • /
    • 2009
  • Experimental results for the laser shock peening of stainless steels, duplex stainless steel and STS304, for the enhancement of surface hardness are reported. A high power Nd:YAG laser (532 nm, 2nd harmonics) was used to irradiate the workpiece in water at the irradiances of 5, 10, $15\;GW/cm^2$. The surface of a workpiece was covered with Fe or Al foil for protection of the original surface and reduction of laser reflection. The laser pulse densities were varied from $25\;pulse/mm^2$ to $75\;pulse/mm^2$. In the case of the STS304, the surface hardness increased with increasing pulse density and the maximum increase of about 29% was achieved using Fe foil at $10\;GW/cm^2$ and $75\;pulse/mm^2$ conditions. The maximum increase in surface hardness of duplex stainless steel was about 8% at $10\;GW/cm^2$ and $75\;pulse/mm^2$ with also Fe foil. In the case of the Al foil, less increase of surface hardness was obtained, possibly due to the thermal expansion effect.

  • PDF

Analytical Structural Stability Evaluation for H-section Beams Made of Ordinary Structural Steels Based on Boundary Conditions at High Temperatures (일반 구조용 강재 적용 정정 및 부정정 보부재의 고온 시 해석적 내력 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.33-38
    • /
    • 2015
  • Loads applied on the floor are transferred through beams to columns. The beams can be designed as both end fixed or simple beams. The load bearing capacity of a beam depends on each boundary condition. However, when the load bearing capacity of a beam is evaluated in fire tests, all kinds of beams are tested using simple beam conditions. In this study, an analytical method performed using heat transfer theory and heat stress analysis based on the mechanical and thermal properties of SS-400 steel at high temperature. This method was used to clarify the differences between the two types of boundary conditions at normal and high temperature. The results show that the load bearing capacity of a both-end fixed beam at high temperature is superior to that of a simple beam. Therefore, the application of simple beam conditions in fire tests for evaluation of load bearing capacity is conservatively safe compared to fixed boundary conditions.

Numerical Study on Skin Burn Injury due to Flash Flame Exposure (돌발화염으로 인한 화상예측에 관한 수치해석적 연구)

  • Lee, Jun-Kyoung;Bang, Chang-Hoon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.13-20
    • /
    • 2012
  • Many fire-fighters suffer from the burn injuries, and the severe burns are the most catastrophic injury a person can survive, resulting in pain, emotional stress, and tremendous economic costs. It is important to understand the physiology of burns for prevention from skin burns and a successful treatment of a burn patient. But a few researches have been presented because the complex physical phenomena of our inside body like non-linearity characteristics of human skin make them difficult. Thus in this study, thermal analyses of biological tissues exposed to a flash fire causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. The several previous models for skin thermo-physical properties were summarized, and the calculated values with those models of tissue injury were compared with the results obtained by the previous experiment for low heat flux conditions. The skin models with good agreement could be found. Also, the skin burn injury prediction results with the best model for high heat flux conditions by flash flame were suggested.

DEVELOPMENT OF AN OPTIMIZATION TECHNIQUE OF A WARM SHRINK FITTING PROCESS FOR AN AUTOMOTIVE TRANSMISSION PARTS

  • Kim, H.Y.;Kim, C.;Bae, W.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.847-852
    • /
    • 2006
  • A fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that applies heat in the outer diameter of a gear to a suitable range under the tempering temperature and assembles the gear and the shaft made larger than the inner radius of the gear. Its stress depends on the yield strength of a gear. Press fitting is a method that generally squeezes gear toward that of a shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of a shaft. A warm shrink fitting process for an automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by the process produced dimensional change in both outer diameter and profile of the gear so that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of a warm shrink fitting process in which design parameters such as contact pressure according to fitting interference between outer diameter of a shaft and inner diameter of a gear, fitting temperature, and profile tolerance of gear are involved. In this study, an closed form equation to predict the contact pressure and fitting load was proposed in order to develop an optimization technique of a warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained from theoretical and finite element analysis and also the expanded amounts of the outer diameters of the gears have a good agreement with the results.

Effects of Hardeners on the Low-Temperature Snap Cure Behaviors of Epoxy Adhesives for Flip Chip Bonding (플립칩용 에폭시 접착제의 저온 속경화 거동에 미치는 경화제의 영향)

  • Choi, Won-Jung;Yoo, Se-Hoon;Lee, Hyo-Soo;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.454-458
    • /
    • 2012
  • Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at $160^{\circ}C$ was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.

Effect of Sputtering Power on the Change of Total Interfacial Trap States of SiZnSnO Thin Film Transistor

  • Ko, Kyung-Min;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.328-332
    • /
    • 2014
  • Thin film transistors (TFTs) with an amorphous silicon zinc tin oxide (a-2SZTO) channel layer have been fabricated using an RF magnetron sputtering system. The effect of the change of excitation electron on the variation of the total interfacial trap states of a-2SZTO systems was investigated depending on sputtering power, since the interfacial state could be changed by changing sputtering power. It is well known that Si can effectively reduce the generation of the oxygen vacancies. However, The a-2SZTO systems of ZTO doped with 2 wt% Si could be degraded because the Si peripheral electron belonging to a p-orbital affects the amorphous zinc tin oxide (a-ZTO) TFTs of the s-orbital overlap structure. We fabricated amorphous 2 wt% Si-doped ZnSnO (a-2SZTO) TFTs using an RF magnetron sputtering system. The a-2SZTO TFTs show an improvement of the electrical property with increasing power. The a-2SZTO TFTs fabricated at a power of 30 W showed many of the total interfacial trap states. The a-2SZTO TFTs at a power of 30 W showed poor electrical property. However, at 50 W power, the total interfacial trap states showed improvement. In addition, the improved total interfacial states affected the thermal stress of a-2SZTO TFTs. Therefore, a-2SZTO TFTs fabricated at 50 W power showed a relatively small shift of threshold voltage. Similarly, the activation energy of a-2SZTO TFTs fabricated at 50 W power exhibits a relatively large falling rate (0.0475 eV/V) with a relatively high activation energy, which means that the a-2SZTO TFTs fabricated at 50 W power has a relatively lower trap density than other power cases. As a result, the electrical characteristics of a-2SZTO TFTs fabricated at a sputtering power of 50 W are enhanced. The TFTs fabricated by rf sputter should be carefully optimized to provide better stability for a-2SZTO in terms of the sputtering power, which is closely related to the interfacial trap states.

A Study on Optimization of Vacuum Glazing Encapsulating Process using Frit inside a Vacuum Chamber (진공챔버 내 프리트 이용 진공유리 봉지공정 최적화에 관한 연구)

  • Park, Sang Jun;Lee, Young Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.567-572
    • /
    • 2013
  • In houses that use heating and cooling system, most of heat loss occurs through the windows, so that low-E glass, double-layered glass, and vacuum glazing are used to minimize the heat loss. In this paper, an encapsulating process that is a final process in manufacturing the vacuum glazing has been studied, and bonding in a vacuum chamber rather than atmospheric bonding was considered. For the efficiency of the encapsulating process, frit-melting temperature and bonding time were optimized with heater temperature, and the glass preheating temperature was optimized to prevent glass breakage due to thermal stress. Thus the vacuum glass was successfully manufactured based on these results and heat transmission coefficient measured was about $5.7W/m^2K$ which indicates that the internal pressure of the vacuum glazing is $10^{-2}$ torr.