• Title/Summary/Keyword: thermal spray process

Search Result 199, Processing Time 0.026 seconds

A Experimental Study on the Effects of the Impingement-wall on the Spray and Combustion Characteristics of Direct-Injection LPG (충돌벽면이 직분식 LPG의 분무 및 연소 특성에 미치는 영향에 관한 실험 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • As an alternative fuel that can be used in SI engine, LPG is one of clean fuels with larger H/C ratio compared to gasoline, low $CO_2$ emission, and small amount of pollutants such as sulfur compounds. When LPG is used in spark ignition engine, volumetric efficiency of the engine can be improved and pumping loss can be reduced by performing direct injection into the combustion chamber instead of port fuel injection. LPG-DI engine allows for lean combustion and stratified combustion under low load. In case of stratified combustion, air fuel ratio can be greatly increased compared to theoretic mixture ratio combustion. Improved thermal efficiency of the engine and reduced pumping loss can be expected from stratified combustion. Accordingly in this study, an experimental apparatus for visualization was designed and manufactured to study the combustion process of LPG after injection and ignition, intended to examine ignition probability and combustion characteristics of spark ignition direct injection(SIDI) LPG fuel. Ambient pressure, ambient temperature and fuel injection pressure were found as important variables that affect ignition probability and flame propagation characteristics of LPG-air mixture. Also, it was verified that the injected LPG fuel can be directly ignited by spark plug under appropriate ambient conditions.

Syntheses of Novel Sol-Gel Precursor Containing Anti-corrosive Functional Group and Their Uses in Organic-Inorganic Hybrid Coatings (내부식성이 우수한 졸-젤 전구체의 합성 및 이를 함유하는 유무기 하이브리드 코팅재)

  • Han, Mi-Jeong;Mang, Ji-Young;Seo, Ji-Yeon
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.405-409
    • /
    • 2010
  • New sol-gel precursors having the ability to protect iron against corrosion were synthesized and used to prepare organic-inorganic hybrid coatings based on epoxy. Bisphenol A epoxy was modified with 3-isocyanatopropyltriethoxysilane to improve the compatibility, and water and HCl were used as catalysts for sol-gel process. Various coating formulations were prepared depending on the type of sol-gel precursors and the amount of each ingredient, and cast on iron substrates by dip-coating and thermally cured. Corrosion protection properties of coated iron were studied by a salt spray test and electrochemical impedance spectroscopy under 0.1 M NaCl electrolyte. Hybrid coatings containing anticorrosive functional group exhibited excellent corrosion protection on iron, compared to that of typical hybrid coatings. From electrochemical impedance spectroscopy, the hybrid coatings containing anticorrosive functional group could maintaine the initial impedance after 500 h, while the impedance of hybrid coatings without them started to decrease after 24 h.

Control of Algal Blooms in Eutrophic Water Using Porous Dolomite Granules

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Shin Haeng;Cheong, Sun Hee;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.108-113
    • /
    • 2017
  • The use of aluminum-based coagulants in water pretreatment is being carefully considered because aluminum exposure is a risk factor for the onset of Alzheimer's disease. Lightly burned-dolomite kiln dust (LB-DKD) was evaluated as an alternative coagulant because it contains high levels of the healthful minerals calcium and magnesium. An organic pore forming agent (OPFA) was incorporated to prepare porous granules after OPFA removal through a thermal decomposition process. A spray drying method was used to produce uniform and reproducible spherical granules with low density, since fine dolomite particles have irregular agglomeration behavior in the hydration reaction. The use of fine dolomite powder and different porosity granules led to a visible color change in raw algae (RA) containing water, from dark green to transparent colorlessness. Also, dolomite powders and granules exhibited a mean removal efficiency of 48.3% in total nitrogen (T-N), a gradual increase in the removal efficiency of total phosphorus (T-P) as granule porosity increased. We demonstrate that porous dolomite granules can improve the settling time and water quality in summer seasons for the emergent treatment of excessive algal blooms in eutrophic water.

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

Surface Properties, Friction, Wear Behaviors of the HOVF Coating of T800 Powder and Tensile Bond Strength of the Coating on Ti64

  • Cho, T.Y.;Yoon, J.H.;Joo, Y.K.;Cho, J.Y.;Zhang, S.H.;Kang, J.H.;Chun, H.G.;Kwon, S.C.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.11-12
    • /
    • 2008
  • Micron-sized Co-alloy T800 powder was coated on Inconel718 (IN718) using high velocity oxygen fuel (HVOF) thermal spraying by the optimal coating process (OCP) determined from the best surface hardness of 16 coatings prepared by Taguchi program. The surface hardness improved 140-160 % from 399 Hv of IN718 to 560-630 Hv by the coating. Porosity of the coating was 1.0-2.7 %, strongly depending on spray parameters. Both friction coefficients (FC) and wear traces (WT) of the coating were smaller than those of IN718 substrate at both $25^{\circ}C$ and $538^{\circ}C$. FC and WT of IN718 and coating decreased with increasing the surface temperature. Tensile bond strength (TBS) and fracture location (FL) of Ti64/T800 were 8,770 psi and near middle of T800 coating respectively. TBS and FL of Ti64/NiCr/T800 were 8,740 psi and near middle of T800 coating respectively. This showed that cohesion of T800 coating was 8,740-8,770 psi, and adhesion of T800 on Ti64 and NiCr was stronger than the cohesion of T800.

  • PDF

A Study on Performance Characteristics of Super-mirror Face Grinding Machine Using Variable Air Pressure (가변 공기압력 초경면 연마기의 성능 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2013
  • The comparisons of performance characteristics between the super-mirror face grinding machine using variable air pressure developed in this laboratory to grind precisely the sliding face of a surface hardened workpiece with thermal spray and the conventional one are investigated by measuring the surface roughness and hardness for a SCM440. To process variously workpiece according to shape, size and materials, the rotating and contacting forces of the developed grinding machine can be changed by air pressure. The surface roughness of processed workpiece can be also attained to state of mirror face by grinding precisely the sliding face with changing the rotating speed of diamond wheel. It is possible to be attached to the various machine tools because the super-mirror face grinding machine using variable air pressure is a small size. The grinding efficiency is elevated because it can be worked by two or more grinding machines attached to concurrently a machine tool for the large workpiece. In this study, results show that the cusp height of the super-mirror face grinding machine for the particle size of 100 and $1500No./mm^2$ is lower than that of the conventional one because the vibration is reduced by rotating very fast the diamond wheel with a pressed air and it can be processed by rotating the diamond wheel with a constantly varied air pressure perpendicular to workpiece surface, and that the workpiece in the super-mirror face grinding machine for the particle size of $3000No./mm^2$ can be processed to state of mirror face that is rarely seen by the cusp height. It is also found that the surface hardness of both the conventional and the super-mirror face grinding machines are increased as the particle size of diamond wheel is reduced, and the surface hardness of the super-mirror face grinding machine is HRC 1.1 ~ 1.8 higher than that of the conventional one.

Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios (합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성)

  • Lee, Junsun;Chung, Tahn;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

Resin Optimization for Manufacturing CFRP Hydrant Tanks for Fire Trucks (소방차용 CFRP 소화전 탱크제조를 위한 수지 최적화 연구)

  • Huh, Mong Young;Choi, Moon Woo;Yun, Seok Il
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.255-260
    • /
    • 2022
  • Lightweight hydrant tanks increase the amount of water that can be carried by fire trucks, resulting in longer water spray times during the initial firefighting process, which can minimize human and property damages. In this study, the applicability of carbon-fiber-reinforced polymer (CFRP) composites as a material for lightweight hydrant tanks was investigated. In particular, the resin for manufacturing CFRP hydrant tanks must meet various requirements, such as excellent mechanical properties, formability, and dimensional stability. In order to identify a resin that satisfies these conditions, five commercially available resins, including epoxy(KFR-120V), unsaturated polyesters(G-650, HG-3689BT, LSP8020), vinyl ester(KRF-1031) were selected as candidates, and their characteristics were analyzed to investigate the suitability for manufacturing a CFRP hydrant tank. Based on the analyses, KRF-1031 exhibited the most suitable properties for hydrant tanks. Particularly, CFRP with KRF-1031 exhibited successful results for thermal stability and elution tests.

Corrosion Behavior of $Y_2O_3$ Coating in an Electrolytic Reduction Process (전해환원공정에서 $Y_2O_2$ 코팅층의 부식거동)

  • Cho, Soo-Haeng;Hong, Sun-Seok;Kang, Dae-Seung;Jeong, Myeong-Soo;Park, Byung-Heong;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.