• 제목/요약/키워드: thermal softening

검색결과 155건 처리시간 0.023초

중대사고에서의 열적 연화를 고려한 원자로 하부구조의 유한요소 극한해석 (Finite Element Limit Analysis of a Nuclear Reactor Lower Head Considering Thermal Softening in Severe Accident)

  • 김기풍;허훈;박재홍;이종인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.782-787
    • /
    • 2001
  • This paper is concerned with the global rupture of a nuclear reactor pressure vessel(RPV) in a severe accident. During the severe reactor accident of molten core, the temperature and the pressure in the nuclear reactor rise to a certain level depending on the initial and subsequent condition of a severe accident. While the rise of the temperature cause the thermal softening of RPV material, the rise of the internal pressure could cause failure of the RPV lower head. The global rupture of an RPV is simulated by finite element limit analysis for the collapse pressure and mode and this analysis results have been compared with a variation of the internal pressure of RPV. The finite element limit method is a systematic tool to secure the safety criteria of a nuclear reactor and to evaluate the in-vessel corium retention.

  • PDF

고분자량 Polyethylene Glycol 처리에 따른 모직물과 유사모직물의 보온성과 태의 향상 방안 모색 (An Approach to Improve Thermal Insulation Properties and Fabric Hand of Wool and Wool-like Fabrics under High Molecular Polyethylene Glycol Treatment)

  • 조길수;이은주
    • 한국의류학회지
    • /
    • 제21권6호
    • /
    • pp.1041-1050
    • /
    • 1997
  • This study was carried out to improve the thermal insulation properties of wool and wool- like fabrics by treating the fabrics with polyethylene glycol, to evaluate the fabric hand of PEG treated wool and wool-like fabrics and to grade up the fabric hand of the treated fabrics by treating with softening agents. Wool and wool-like fabrics were treated with high molecular PEG-8,000 by PDC. The thermal release/storage properties were measured on a DSC. Hand of specimens were evaluated by KES-FB system. The results were as follows; 1. PEG-treated fabrics showed thermal storage and thermal release properties by DSC and the heat contents were generally proportional to the add-ons. 2. PEG-treated fabrics showed higher Koshi and lower Numeri and Sofutosa values due to lower tensile energy and recovery and higher bending rigidity and shear stiffness as the add- ons increased. 3. PEG-treated fabrics showed much lower bending rigidity after softening agents treatment.

  • PDF

배추조직의 가열 연화의 속도론적 연구 (Kinetics of Thermal Softening of Chinese Cabbage Tissue)

  • 최동원;김주봉;유명식;변유량
    • 한국식품과학회지
    • /
    • 제19권6호
    • /
    • pp.515-519
    • /
    • 1987
  • 가열에 의한 생배추 및 절임배추 조직의 동적변화를 Instron을 사용하여 puncture test로 측정연구하였다. $80^{\circ}C$ 범위의 저온에서 데치기와 살균하는 저온장시간 열처리 조작으로 배추 조직을 최대한 유지할 수 있을 것으로 생각되었다. 배추조직의 열에 의한 연화속도는 1차식으로 표현될수 있었다. 데치기 조작에서 $80^{\circ}C$ 이하에서 데치기한 경우 생배추 및 절임배추의 활성화 에너지는 각각 1.4 및 2.8kcal/mol, $80^{\circ}C$이상에서는 각각 31.5 및 42.4kcal/mol로서, $80^{\circ}C$ 이하에서는 배추조직의 연화속도가 온도의 영향을 크게 받지 않았다. 한편 예비열처리 조작인 데치기는 저온살균공정에서 배추조직의 연화에 큰 영향을 미쳐 $80^{\circ}C$이상에서 데치기한 배추는 다음 저온살균공정에서 열처리 온도에 민감하게 영향을 받았다.

  • PDF

소성변형 밀 마멸에 대한 열간 단조 금형의 수명 평가 (Life Estimation of Hot Forging Die by Plastic Deformation and Wear)

  • 이현철;김병민;김광호
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.66-75
    • /
    • 2003
  • This paper describes about the estimation method of die lift by wear and plastic deformation in hot forging process. The thermal load and the thermal softening are happened by the high temperature in hot forging process. Tool lift decreases considerably due to the softening of the surface layer of a tool caused by high thermal load and long contact time between tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affects die accuracy and tool lift are wear and the plastic deformation of a die. The new developed technique for predicting tool life applied to estimate the production quantity for a spindle component and these techniques assist to improve the tool life in hot forging process.

열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정 (Adjustment of Roll Gap for The Dimension Accuracy of Bar in Hot Bar Rolling Process)

  • 김동환;김병민;이영석
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.96-103
    • /
    • 2002
  • The objective of this study is to adjust the roll gap fur the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes fur round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental from and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

미소 전단 띠 형성에 의한 톱니형 칩 생성 예측 (Prediction of Serrated Chip Formation due to Micro Shear Band in Metal)

  • 임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

Adjustment of Roll Gap for the Dimension Accuracy of Bar in Hot Bar Rolling Process

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Youngseog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.56-62
    • /
    • 2003
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정 (Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process)

  • 김동환;김병민;이영석;유선준;주웅용
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

열연화를 고려한 금형마멸모델에 관한 연구(I)-마멸모델의 정립 (A Study on Die Wear Model considering Thermal Softening(I) -Construction of Wear Model)

  • 강종훈;박인우;제진수;강성수
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.274-281
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In elevated temperature forming processes wear is the predominant factor for tool operating life. To predict tool life by wear Achard's model is generally applied. Usually hardness of die is considered to be a function of temperature. But hardness of die is a function of not only tem-perature but also operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of a function of temperature and time. By experiment of reheating of die softening curve was obtained and applied to suggest modified Archard's Model in which hardness is a function of main tempering curve.

  • PDF

고속 절삭공정 중 톱니형 칩 생성 예측 (Prediction of Serrated Chip Formation in High Speed Metal Cutting)

  • 임성한;오수익
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.358-363
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5Τ$_{m}$. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.s.