• Title/Summary/Keyword: thermal sensitivity

검색결과 627건 처리시간 0.026초

경계요소법을 이용한 2 차원 복수 영역 열전도 고체의 형상 설계 민감도 해석 (Shape Design Sensitivity Analysis of Two-Dimensional Thermal Conducting Solids with Multiple Domains Using the Boundary Element Method)

  • 이부윤;임문혁
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.175-184
    • /
    • 2003
  • A method of the shape design sensitivity analysis based on the boundary integral equation formulation is presented for two-dimensional inhomogeneous thermal conducting solids with multiple domains. Shape variation of the external and interface boundary is considered. A sensitivity formula of a general performance functional is derived by taking the material derivative to the boundary integral identity and by introducing an adjoint system. In numerical analysis, state variables of the primal and adjoint systems are solved by the boundary element method using quadratic elements. Two numerical examples of a compound cylinder and a thermal diffuser are taken to show implementation of the shape design sensitivity analysis. Accuracy of the present method is verified by comparing analyzed sensitivities with those by the finite difference. As application to the shape optimization, an optimal shape of the thermal diffuser is found by incorporating the sensitivity analysis algorithm in an optimization program.

초음파 조사에 의한 두부의 열 감도 (Thermal Sensitivity of the Bean Curd by Ultrasonic Irradiation)

  • 조문재;윤용현;부유천;김용태
    • 한국음향학회지
    • /
    • 제23권7호
    • /
    • pp.503-513
    • /
    • 2004
  • 본 논문에서는 단위 음향파워에 대한 온도 변화인 열 감도 (thermal sensitivity)를 새로이 정의하였으며, 이 물리량으로 조직모사물질의 성능을 평가 할 수 있다는 것을 제안하였다. 실험에 사용된 시료는 공장에서 생산되는 식용 두부이고, 초음파의 주파수를 8 MHz로 고정하고 조사 (irradiation) 시간, 음향파워, 시료 표면으로 부터의 깊이 및 초음파 변환기와의 거리에 따른 온도 변화를 측정하였다. 아울러 깊이와 초음파 변환기와의 거리를 고정하고 일정한 음향파워 조건에서 주파수에 따른 온도 변화도 측정하였다. 측정된 온도변화를 열 감도로 변환하여 고찰한 결과 조직모사물질의 성능인자로 사용하기에 충분한 것으로 판명되었다. 특히 조직모사물질로 선택한 두부는 10 MHz 에서 열 감도가 최대로 나타났으며. 이 결과는 실제 인체 조직에서 열 감도가 주파수에 민감하게 의존 할 수 있다는 가능성을 함축하는 중요한 결과이다.

매스 콘크리트 구조물의 수화열 및 응력 해석의 민감도 분석 (Sensitivity Study of Thermal Stresses in Mass Concrete Structures)

  • 차수원;김광수
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.160-167
    • /
    • 2001
  • Cracking in connote structures is one of the main issues of structural design next to ensuring the load-bearing capacity. Thermal analysis is used to prevent thermal mucking, but concrete properties are uncertain variable, and analysis results have uncertainty, too. In this study, sensitivity analysis is performed to investigate the effect of conductivity, specific heal and pouring temperature. The results show that lower conductivity and higher specific heat increase the maximum temperature and maximum tensile stress. The structure with internal restraint is mostly influenced by the change of conductivity and specific heat.

  • PDF

상용 소프트웨어 ANSYS를 이용한 열전도문제의 형상설계 민감도 해석 (Shape Design Sensitivity Analysis of Thermal Conduction Problems using Commercial Software ANSYS)

  • 최주호
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.645-652
    • /
    • 2000
  • A method for shape design sensitivity analysis is proposed utilizing commercial software ANSYS for thermal conduction problems. While the sensitivity formula is derived analytically by introduing adjoint variable concept, sensitivity calculation in practice as well as the primal and adjoint solution of thermal conduction is performed using the ANSYS very easily. Since the formula always takes boundary integral form, sensitivity evaluation in ANSYS requires a little more addition of post-processing routine which involves evaluation of boundary variable from the obtained solution. Though the BEM has been used as a better tool for this purpose, the present study shows it can also be calculated using any kind of analysis code such as ANSYS since the formula is based on analytic nature. Therefore the present study provides a new and efficient way of optimization which was not possible before using commercial software. The usefulness of the method is illustrated via a weight minimization problem of thermal diffuser.

Gap 센서의 열 특성에 관한 연구 (Experimental Study on Thermal Characteristics for Gap Sensor)

  • 구재량;이두영;김두영;이대성;김성휘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.790-793
    • /
    • 2005
  • Gap Sensor is widely used to measure vibration in power plant. In general the result of the vibration measurement may have special error due to two thermal characteristics of gap sensor such as sensitivity shift and zero shift. Thermal sensitivity is change of linearity and thermal zero shift is chang of offset. It is investigated two thermal characteristics for Rap son or in this paper.

  • PDF

주사탐침열현미경의 감도향상을 위한 전체 실리콘 산화막 열전탐침의 열적설계 및 일괄제작 (Thermal Design and Batch Fabrication of Full SiO2 SThM Probes for Sensitivity Improvement)

  • 정승필;김경태;원종보;권오명;박승호;최영기;이준식
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.800-809
    • /
    • 2008
  • Scanning Thermal Microscope (SThM) is the tool that can map out temperature or the thermal property distribution with the highest spatial resolution. Since the local temperature or the thermal property of samples is measured from the extremely small heat transferred through the nanoscale tip-sample contact, improving the sensitivity of SThM probe has always been the key issue. In this study, we develop a new design and fabrication process of SThM probe to improve the sensitivity. The fabrication process is optimized so that cantilevers and tips are made of thermally grown silicon dioxide, which has the lowest thermal conductivity among the materials used in MEMS. The new design allows much higher tip so that heat transfer through the air gap between the sample-probe is reduced further. The position of a reflector is located as far away as possible to minimize the thermal perturbation due to the laser. These full $SiO_2$ SThM probes have much higher sensitivity than that of previous ones.

하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구 (Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle)

  • 정수진;정진우;하승찬
    • 한국분무공학회지
    • /
    • 제26권3호
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.

슬래브축열 시스템 설계인자의 감도해석 (A Sensitivity Analysis of Design Factors of Air-Conditioning System with Slab Thermal Storage)

  • 정재훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.590-595
    • /
    • 2008
  • In this paper, the sensitivity analysis was examined about the main factors that compose an air-conditioning system with slab thermal storage by using the analytic solution. Those factors are the insulation performance of floor slab surface, the slab thickness, the heat capacity of floor slab, the air change rate, and the insulation performance of the wall. The slab thickness and heat capacity of floor slab that minimize heating loads was gained by sensitivity analysis. It is became clear that the insulation performance of slab surface, high airtightness and high heat insulation are important design factors in air conditioning system with slab thermal storage.

  • PDF

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

Design Sensitivity Analysis of Coupled Thermo-elasticity Problems

  • Choi Jae-yeon;Cho Seonho
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.50-60
    • /
    • 2004
  • In this paper, a continuum-based design sensitivity analysis (DSA) method is developed for the weakly coupled thermo-elasticity problems. The temperature and displacement fields are described in a common domain. Boundary value problems such as an equilibrium equation and a heat conduction equation in steady state are considered. The direct differentiation method of continuum-based DSA is employed to enhance the efficiency and accuracy of sensitivity computation. We derive design sensitivity expressions with respect to thermal conductivity in heat conduction problem and Young's modulus in equilibrium equation. The sensitivities are evaluated using the finite element method. The obtained analytical sensitivities are compared with the finite differencing to yield very accurate results. Extensive developments of this method are useful and applicable for the optimal design problems incorporating welding and thermal deformation problems.