• Title/Summary/Keyword: thermal responses

Search Result 432, Processing Time 0.031 seconds

Thermo-physiological Responses by Presence of Vents and Difference in Clothing Length for Construction Site Working Clothes (통기구 유무와 옷 길이 차이에 따른 건설현장 작업복의 온열생리반응)

  • Kim, Seong-Suk;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.20 no.2
    • /
    • pp.202-209
    • /
    • 2018
  • This study examined thermo-physiological responses according to the design change of construction site working clothes (control (C) working clothes; prototype (P) working clothes). We measured rectal temperature, skin temperature, micro-climate within the clothes and sweat rate. In the evaluation of physiological functionality, based on pattern improvement in working clothes, P working clothes showed significantly lower rectal temperatures, trunk and thigh skin temperatures than C working clothes. It is preferable that rectal temperature should be kept low during work that is not favorable to an increase in body temperature. P working clothes were more physiologically functional than C working clothes. In addition, P working clothes showed significantly lower temperatures in the trunk and thigh parts in a micro climate temperature. We could explain that the side seam zipper on the pants and the gusset on armpit parts create an air permeability effect of lowering the temperature of micro-climate. Aggressive ventilation through the slit of the garment is an important factor for the restoration of the physiological function of the worker at rest between work. Sweat rate showed a higher level in C working clothes than P working clothes. When working in a hot environment, workwear needs to be designed so that the worker is not exposed to thermal stress. Therefore, it was evaluated that the P work clothes used in this study alleviated the physiological burdens of heat.

Thermoregulatory Responses of Differently Designe Cleanroom Garments (고청정 작업환경에서 방진복 디자인이 인체 생리반응에 미치는 영향)

  • 이윤정;정찬주;정재은
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.6
    • /
    • pp.811-820
    • /
    • 2002
  • The physical responses and subjective sensations of different cleanroom garments were compared in order to discover which cleanroom garment design could minimize pollution of the working environment by dust from the worker, maintain a pleasant microclimate and provide effective thermoregulation. A. Coverall with non-detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice B. Coverall with detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice C. Separate top with non-detachable hood, kimono sleeves (front), raglan sleeves (back), raschell net on the bodice D. Coverall with non-detachable hood, set-in sleeves, raschell net on the bodice E. Coverall with non-detachable hood, raglan sleeves (back), l00% cotton inner wear (upper body) The results of the experiment were as follows. Because the hood covered the shoulder and the chest areas, the chests temperature of the worker wearing garment E was quite higher than those wearing other garment designs. For fabric that has been coated in order to prevent dust, layered designs should be avoided in order to prevent skin temperature from rising. Compared with layers of underwear, it would be more effective to attach a see-through raschell net which clings to the body. Thermal sensations were also highest in garment E, reinforcing the finding that layered designs should be avoided. Through the experiment, it was found that a new material coverall with a non-detachable hood was effective in minimizing dust, suppressing skin temperature increases, maintaining a superior microclimate and providing pleasant subjective sensations.

Influence of Mild Hypothermia on Clonidine-Induced Cardiovascular Responses in the Pentobarbital-Anesthetized Rat

  • Kim, Eun-Jeong;Kim, Seong-Yun;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.383-391
    • /
    • 1999
  • This study was carried out to determine whether the effects of an ${\alpha}_2-adrenoceptor$ agonist, clonidine, on mean arterial pressure (MAP) and heart rate (HR) are influenced by mild hypothermia. Experiments were performed in respiration-controlled and spontaneously breathing pentobarbital-anesthetized rats. Rectal temperature was maintained at $37.5{\pm}0.3^{circ}C$ for normothermic groups or at $35.2{\pm}0.3^{circ}C$ for mild hypothermic groups. Intravenous injection of clonidine (1 and 2 ${\mu}g/kg)$ produced depressor and bradycardic responses in spontaneously breathing rats under both normothermic and mild hypothermic condition: a decrease in MAP was not altered but bradycardic response was significantly augmented in the mild hypothermic group as compared with the normothermic group. Under the respiration-controlled condition, the hypotensive effect of clonidine $(2\;{\mu}g/kg)$ was reduced, whereas the bradycardic effect was increased in mild hypothermic rats as compared with normothermic rats. Both hypotensive and bradycardic effects of clondine $(2\;{\mu}g/kg)$ were blocked by pretreatment with an ${\alpha}_2-adrenoceptor$ antagonist, yohimbine (0.5 mg/kg), in both thermal conditions. Yohimbine (0.5 mg/kg, i.v.) alone produced signifcantly an increase in heart rate in the mild hypothermic group than in the normothermic group. Pretreatment with a muscarinic receptor antagonist, atropine methylnitrate (1 mg/kg, i.v.), attenuated the bradycardic effect of clonidine in the mild hypothermic group but not in the normothermic group. These results suggest that clonidine- induced bradycardia is amplified by mild hypothermia probably through an increased parasympathetic activity.

  • PDF

Effect of Clonidine on the Changes in Dorsal Horn Cell Activity Induced by Chemical Algogenics (통각유발물질에 의한 척수후각세포의 반응에 미치는 Clonidine의 영향)

  • Lee, Kwang-Hoon;Kim, Jin-Hyuk;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.245-257
    • /
    • 1988
  • The present study was undertaken to investigate the effect of clonidine on the response of the dorsal horn cells to intra-arterially administered bradykinin $(BK:40{\mu}g)$ and $K^+(4mg)$ in spinal cats and cats with intact spinal cord. The change in the activities of low threshold (LT), high threshold (HT) and wide dynamic range (WDR) cells induced by BK and $K^+$ were determined before and after treatment of animals with clonidine. Also studied was mechanism of inhibitory action of clonidine on the responses of dorsal horn cells to the chemical algogenics. Number of WDR cell responded to intra-arterially administered BK and $K^+$ was greater in spinal animals than in cats with intact spinal cord. Following administration of BK or $K^+$ no change was observed in the activity of LT cell whereas activity of HT cell increased invariably. The increased response of HT cell to BK and $K^+$ was markedly suppressed by clonidine. On the other hand, such inhibitory actions of clonidine were almost completely blocked by yohimbine. The majority of WDR cells were activated by $K^+$ while response of WDR cells to BK was diverse (excitatory, inhibitory or mixed). These results indicate that clonidine inhibits responses of the dorsal horn cells not only to thermal or mechanical stimulations but also to chemical algogenics, and that the inhibitory action of clonidine is generally mediated through excitation of ${\alpha}_2-adrenoreceptors$.

  • PDF

Assessment of Wear Comfort of Water-vapor-permeable (WVP) garments (투습방수의류의 착용쾌적성 평가)

  • Kang, In-Hyeng;Park, Hyo-Suk;Lee, Han-Sup
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.9
    • /
    • pp.928-939
    • /
    • 2012
  • This study evaluates wear comforts of water-vapor-permeable (WVP) garments through a measurement of various parameters such as skin and rectal temperatures, microclimate between skin and clothing, sweat rate, and subjective sensations (thermal, wet and comfort sensations) to correlate the physiological responses of the human body with its comfort feeling. Wear comfort during a specific exercise on a treadmill in a climatic chamber (temperature T = $20{\pm}0.5^{\circ}C$ and relative humidity H = $50{\pm}10%$) were studied using eight men wearing seven sportswear outfits (a long sleeve shirts and a long pants) made with seven different WVP fabrics. A comfort sensation was found to be highly correlated with skin T (p<.001), microclimate (T and H) between skin and clothing (p<.001) and sweat rate (p<.05). A regression model correlating comfort sensations and physiological responses obtained from wearer trials could be established: Y = 14.167 - 0.362 ${\times}$ X1 + 0.424 ${\times}$ X2 - 0.238 ${\times}$ X3 - 0.561 ${\times}$ X4 + 0.253 ${\times}$ X5 + 0.214 ${\times}$ X6 - 0.393 ${\times}$ X7 + 0.023 ${\times}$ X8 - 0.043 ${\times}$ X9. (Y = comfort sensation, X1 = forehead skin T, X2 = forearm skin T, X3 = hand skin T, X4 = thigh skin T, X5 = T of chest microclimate, X6 = T of thigh microclimate, X7 = chest sweat rate, X8 = H of back microclimate, X9 = H of thigh microclimate. The regression model obtained in this work can be used by manufacturers to objectively estimate the comfort sensation of sportswear before it is introduced to the consumer market. This study provides salient information to sportswear manufacturers and sportswear consumers.

Effect of the Heat-exposure on Peripheral Sudomotor Activity Including the Density of Active Sweat Glands and Single Sweat Gland Output

  • Lee, Jeong-Beom;Kim, Tae-Wook;Shin, Young-Oh;Min, Young-Ki;Yang, Hun-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.273-278
    • /
    • 2010
  • Tropical inhabitants are able to tolerate heat through permanent residence in hot and often humid tropical climates. The goal of this study was to clarify the peripheral mechanisms involved in thermal sweating pre and post exposure (heat-acclimatization over 10 days) by studying the sweating responses to acetylcholine (ACh), a primary neurotransmitter of sudomotor activity, in healthy subjects (n=12). Ten percent ACh was administered on the inner forearm skin for iontophoresis. Quantitative sudomotor axon reflex testing, after iontophoresis (2 mA for 5 min) with ACH, was performed to determine directly activated (DIR) and axon reflex-mediated (AXR) sweating during ACh iontophoresis. The sweat rate, activated sweat gland density, sweat gland output per single gland activated, as well as oral and skin temperature changes were measured. The post exposure activity had a short onset time (p<0.01), higher active sweat rate [(AXR (p<0.001) and DIR (p<0.001)], higher sweat output per gland (p<0.001) and higher transepidermal water loss (p<0.001) compared to the pre-exposure measurements. The activated sweat rate in the sudomotor activity increased the output for post-exposure compared to the pre-exposure measurements. The results suggested that post-exposure activity showed a higher active sweat gland output due to the combination of a higher AXR (DIR) sweat rate and a shorter onset time. Therefore, higher sudomotor responses to ACh receptors indicate accelerated sympathetic nerve responsiveness to ACh sensitivity by exposure to environmental conditions.

Heat Acclimatization in Hot Summer for Ten Weeks Suppress the Sensitivity of Sweating in Response to Iontophoretically-administered Acetylcholine

  • Lee, Jeong-Beom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.349-355
    • /
    • 2008
  • To determine the peripheral mechanisms involved in thermal sweating during the hot summers in July before acclimatization and after acclimatization in September, we evaluated the sweating response of healthy subjects (n=10) to acetylcholine (ACh), a primary neurotransmitter involved in peripheral sudomotor sensitivity. The quantitative sudomotor axon reflex test (QSART) measures sympathetic C fiber function after iontophoresed ACh evokes a measurable reliable sweat response. The QSART, at 2 mA for 5 min with 10% ACh, was applied to determine the directly activated (DIR) and axon reflex-mediated (AXR) sweating responses during ACh iontophoresis. The AXR sweat onset-time by the axon reflex was $1.50{\pm}0.32$ min and $1.84{\pm}0.46$ min before acclimatization in July and after acclimatization in September, respectively (p<0.01). The sweat volume of the AXR(l) [during 5 min 10% iontophoresis] by the axon reflex was $1.45{\pm}0.53\;mg/cm^2$ and $0.98{\pm}0.24\;mg/cm^2$ before acclimatization in July and after acclimatization in September, respectively (p<0.001). The sweat volume of the AXR(2) [during 5 min post-iontophoresis] by the axon reflex was $2.06{\pm}0.24\;mg/cm^2$ and $1.39{\pm}0.32\;mg/cm^2$ before and after acclimatization in July and September, respectively (p<0.001). The sweat volume of the DIR was $5.88{\pm}1.33\;mg/cm^2$ and $4.98{\pm}0.94\;mg/cm^2$ before and after acclimatization in July and September, respectively (p<0.01). These findings suggest that lower peripheral sudomotor responses of the ACh receptors are indicative of a blunted sympathetic nerve response to ACh during exposure to hot summer weather conditions.

The Wearing Sensation and Physiological Responses in School Wear in the High School Girl's (여고생 통학복의 착용감과 생리반응에 관한 연구)

  • Kweon, Soo-Ae
    • Korean Journal of Human Ecology
    • /
    • v.7 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • The subjects in this research were 368 girls in high school for survey, and wearing sensation and physiological responses were investigated through wearing trials on human body in climatic chamber based on these results from the survey. The results are as follows : 1. They enjoyed wearing t-shirts, jackets, vests, and blouses in order for the upper clothes, and they preferred t-shirts to blouses. For the lower clothes, they enjoyed slacks much more than skirts. The weight of clothes was significantly heavier in the group where they wore the uniforms(U-group) than in the group where they wore the free styles(F-group). When they chose the school wear, activity was the most important of all, and the maintenance was the least. 2. As the classes were a little cool and dry, most of them dissatisfied the environment. The degree of the satisfaction of the class environment and properties to it were higher in the U-group than in F-group. 3. In the textiles, colors, styles, activity, static electricity, seasonal property, and easiness of putting on and taking off the clothes, F-group was more satisfied than U-group. U-group was more satisfied than F-group in the soil of the clothes. 4. The thermal comfort, thickness, and tightness of the clothes were not significantly different between the groups. The clothes of U-group was heavier than those of F-group, and the tactile sensation in U-group was worse than F-group. In U-group the students felt the skirts very inconvenient when they acted. 5. The weight of the clothes influenced the wearing sensation, therefore the heavier the clothes were the less satisfied they felt. 6. The inside temperature of clothes was significantly higher in U-group than in F-group. The skin temperatures of abdomen and arm were significantly higher in U-group than in F-group, while the skin temperatures of thighs and legs were significantly lower in U-group than in F-group. U-group felt heavier than F-group in wearing the clothes. Therefore the improvement of the clothes weight is needed.

  • PDF

Physiological Responses to Different Exercise Intensities while Wearing Different Types of Sportswear Materials (스포츠웨어 착용에 따른 운동시 온열생리반응에 미치는 영향)

  • Kim, Tae-Gyou;Sung, Su-Kwang
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.123-128
    • /
    • 2006
  • For the purpose of examining the relationship of physiological and subjective responses to different exercise intensities and varied types of sportswear material, under environmental condition $20{\pm}1^{\circ}C$ $50{\pm}3%$RH, five men who wear four different kinds of sportswear which have same clothing cover area. The subjects exercised for 20 min with a 20 min pre-exercise rest period and another 20 min post-exercise recovery period. Throughout the 60 min. duration, we monitored the local skin temperature, rectal temperature, clothing microclimate and subjective sensation. The mean skin temperature was recorded to range from $33.5{\sim}34.1^{\circ}C$ for the entire duration of the experiment with the highest temperature observed at the 7th min after starting the exercise. During the exercise intensity at THR 20, the lowest recorded temperature was at the 5th min of the recovery time and stabilized at the 10th min. However, in the exercise intensity condition at THR 70, the temperature declined steadily until the end of the experiment. With regard to clothing materials, cotton 100% and Polyester/Cotton blended fabrics knit(35/65) was $0.5{\sim}0.7^{\circ}C$ maintained lower than Polyester 100% and polyester/Cotton blended woven fabrics (65/35). In the case of the rectal temperature at THR 70 in case of PET 100%, Polyester/Cotton blended woven fabrics (35/65) was higher $0.2{\sim}0.5^{\circ}C$ than other sportswear throughout the duration of the experiment.

Thermophysiological Responses and Subjective Sensations when Wearing Clothing with Quickly Water-Absorbent and Dry Properties Under Exercise-Induced Heat Strain (운동에 의한 열 스트레스하에서 흡한속건성 소재 운동복 착용시의 온열생리적 반응 및 주관적 감각)

  • Lee, So-Jin;Park, Shin-Jung
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.349-356
    • /
    • 2006
  • The purpose of this study was to compare the thermophysiological responses and subjective sensations of clothing materials with different water transfer property investigated in exercising and resting subjects at an ambient temperature of $20^{\circ}C$ and a relative humidity of 40%. Two kinds of clothing ensemble were tested: 100% cotton with highly water-absorbent but slowly dry properties(C) and 100% polyester with quickly water-absorbent and dry properties by four capillary channels(QADP). Seven apparently healthy male participants each undertook two series of experiments comprised 10-min of rest, 20-min of exercise with 70% of $VO_{2max}$ on a treadmill and 20-min of recovery. Mean skin temperature was significantly lower in QADP than in C during exercise and recovery. Clothing microclimate temperature was significantly lower in QADP during exercise and clothing surface temperature was also lower in QADP especially during recovery. Also, clothing surface humidity was significantly higher in QADP after the later half of exercise. The concentration of blood lactic acid tended to decrease to a lower level at recovery 3 minutes when wearing QADP rather than C clothing ensemble. Metabolic energy was marginally significantly less during the second half of exercise in QADP. Body mass loss tended to be greater in C than in QADP. The participants had better scores in thermal sensation, comfortable sensation and wetness in QADP during exercise and recovery. These results show that functional materials with quickly water-absorbent and dry properties can alleviate heat strain and induce more comfortable clothing microclimates and subjective sensations in the exercise-induced hyperthermia.