• Title/Summary/Keyword: thermal response test

Search Result 235, Processing Time 0.025 seconds

A Study on Regional Distribution of the Ground Effective Thermal Conductivity (지중 유효 열전도도의 지역별 분포)

  • Kong, Hyoung Jin;Kwon, Soon-Ki;Ji, Seung Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • Ground source heat pump(GSHP) systems is known as environmental friendly and energy saving. Especially a ground heat exchanger is an important unit that determines the thermal performance of a system and initial cost. In design phase of vertical GSHP system, it is recommended that the effective borehole thermal resistance, be determined from in-situ thermal response test. In this study, ground effective thermal conductivity was categorized by a region. As a result of the study, the ground thermal conductivity of national average was analyzed as 2.56 W/mK. The highest regional average of thermal conductivity is 2.68 W/mK in Seoul, and the lowest is 2.28 W/mK in Busan. Also, the thermal conductivity on the coast has been analyzed approximately 30% lower than the average.

Characterization of aluminized RDX for chemical propulsion

  • Yoh, Jai-ick;Kim, Yoocheon;Kim, Bohoon;Kim, Minsung;Lee, Kyung-Cheol;Park, Jungsu;Yang, Seungho;Park, Honglae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.418-424
    • /
    • 2015
  • The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.

Evaluation of Heat Exchange Efficiency and Applicability for Parallel U-type Cast-in-place Energy Pile (병렬 U형 현장타설 에너지파일의 열교환 효율 및 적용성 평가)

  • Park, Sangwoo;Kim, Byeongyeon;Sung, Chihun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.361-375
    • /
    • 2015
  • An energy pile is one of the novel ground heat exchangers (GHEX's) that is a economical alternative to the conventional closed-loop vertical GHEX. The combined system of both a structural foundation and a GHEX contains a heat exchange pipe inside the pile foundation and allows a working fluid circulating through the pipe, inducing heat exchange with the ground formation. In this paper, a group of energy piles equipped with parallel U-type (5, 8 and 10 pairs) heat exchange pipes was constructed in a test-bed by fabricating in large-diameter cast-in-place concrete piles. In addition, a closed-loop vertical GHEX with 30m depth was constructed nearby to conduct in-situ thermal response tests (TRTs) and to compare with the thermal performance of the cast-in-place energy piles. A series of thermal performance tests was carried out with application of an artificial cooling and heating load to evaluate the heat exchange rate of energy piles. The applicability of cast-in-place energy piles was evaluated by comparing the relative heat exchange efficiency and heat exchange rate with preceding studies. Finally, it is concluded that the cast-in-place energy piles constructed in the test-bed demonstrate effective and stable thermal performance compared with the other types of GHEX.

An Investigation on the Thermal Characteristics of Heat-Responsive Element of Sprinkler Head (스프링클러헤드 감열부의 열적 특성에 관한 연구)

  • You, Woo-Jun;Moon, Hyo-Jun;Youm, Moon-Cheon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.79-84
    • /
    • 2012
  • In this study thermal characteristics of heat-responsive element considering conduction, convection and rate of change of element using Response Time Index (RTI) applied to sensitivity test of sprinkler head at home and aborad are theoretically investigated. Analytic solution of temperature distributions with radial direction and time is obtained form energy transport equations, non-homogeneous 2th order partial differential equation, applying to constant wall temperature and symmetric condition in order to analyze thermal characteristics of heat-responsive element for circular cylindrical geometry. Base on the results, the analytic method of this study is fundamental data to practical use for sensitivity test of sprinkler head and design of heat-responsive element.

Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model (3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가)

  • Park, Moon-Seo;Lee, Chul-Ho;Min, Sun-Hong;Kang, Shin-Hyung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF

A Study on the Thermal Characteristics of Horizontal Ground Heat Exchanger using Thermal Response Test (열응답시험을 이용한 수평형 지중열교환기 열특성 연구)

  • Chang, Keun Sun;Kim, Min-Jun;Kim, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.24-30
    • /
    • 2016
  • Vertical and standing column well ground heat exchangers have mostly been installed for ground source heat pump systems (GSHP) and thermal response tests (TRT) have been applied to evaluate the thermal characteristics for these heat exchangers. In this paper, the TRT coupled with a line source method was applied to evaluate the thermal characteristics of the horizontal ground heat exchanger (HGHX). Load tests of a HGHX were also performed to examine the daily variations of the ground and fluid temperatures associated with the daily intermittent operation of GSHP. For this test, the straight HGHX (depth 2 m, length 50 m, 8 line) was installed in Ansan city. The results showed that the variations of ground thermal conductivity of HGHX during one year were relatively small with the range of $1.43{\sim}1.64W/m{\cdot}K$, and the maximum and minimum values appeared in December and May, respectively. Load tests with heat injection rate of 6.0 kW for 10 hours per day to HGHX during twelve days were performed in June, September and December, and resulted in a ground initial temperature rise of $4.31^{\circ}C$, $3.14^{\circ}C$, and $1.21^{\circ}C$ during these days, respectively.

Evaluation of Heat Transfer Characteristics in Double-Layered and Single-Layered Soils (이층지반과 단일지반의 열전달 거동 특성 평가)

  • Yoon, Seok;Park, Skan;Park, Hyun-Ku;Go, Gyu-Hyun;Lee, Seung-Rae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • This paper presents how to analyze heat transfer characteristics of double-layered soils. Thermal response tests were conducted to measure the ground thermal conductivities of Joomunjin sand and double layered soils filled in a steel box of which the size is $5m{\times}1m{\times}1m$. Double-layered soils were composed of Joomunjin sand and Kaoline clay. Each thermal conductivity of Joomunjin sand and Kaloine clay was measured by using Heat Flow Meter considering different void ratio. The ground thermal conductivity of double-layered soils was 15% smaller than that of Joomunjin sand.

An Experimental Study of surface temperature distribution in Flat-Plate Heat Pipe (평판형 히트파이프의 표면온도 분포에 관한 실험적 연구)

  • Joo, Sang-Hyun;Lee, Young-Soo;La, Ho-Sang;Jo, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.635-639
    • /
    • 2007
  • In this study, optimal design and test of flat-plate heat pipe were carried out in order to improve both thermal response and surface temperature uniformity of heating plate. Experimental results show that the thermal response of flat-plate heat pipe is faster than that of a conventional heating type ones along with less weight and cost. The surface temperature uniformity is also improved.

  • PDF

Evaluation of Heat Exchange Rate of Different Types of Ground Heat Exchangers (수직밀폐형 지중 열교환기 형태에 따른 열효율 평가)

  • Yoon, Seok;Go, Gyu-Hyun;Lee, Seung-Rae;Cho, Nam-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2393-2400
    • /
    • 2013
  • This research presents an experimental study of heat exchange rate of U, W, 2U and coil type ground heat exchangers (GHEs) measured by thermal performance tests (TPTs). The four types of GHEs were installed in a partially saturated dredged soil deposit of Incheon International Airport area. Thermal response tests (TRTs) were conducted for U, W and 2U type GHEs to deduce the ground thermal conductivity. Besides, TPTs were also conducted for U, W, 2U and coil type GHEs to evaluate heat exchanger rates under 100-hr continuous and 8-hr intermittent operation conditions for five days. Coil shaped GHE showed about twice higher thermal performance than the others GHEs. Furthermore, intermittent operation condition showed 30~40% higher heat exchange rates than continuous operation condition.

Evaluation on in-situ Heat Exchange Efficiency of Energy Slab According to Pipe Materials and Configurations (파이프 재질 및 형태에 따른 에너지 슬래브의 현장 열교환 성능 평가)

  • Lee, Seokjae;Oh, Kwanggeun;Han, Shin-in;Park, Sangwoo;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • The energy slab is a ground coupled heat exchanger equipped in building slab structures, which represents a layout similar to the horizontal ground heat exchanger (GHEX). The energy slab is installed as one component of the floor slab layers in order to utilize the underground structure as a hybrid energy structure. However, as the energy slab is horizontally arranged, its thermal performance is inevitably less than the conventional vertical GHEXs. Therefore, stainless steel (STS) pipes are alternatively considered as a heat exchanger instead of high density polyethylene (HDPE) pipes in order to enhance thermal performance of GHEXs. Moreover, not only a floor slab but also a wall slab can be utilized as a heat-exchangeable energy slab in order to maximize the use of underground space effectively. In this paper, four field-scale energy slabs were constructed in a test bed, which consist of the STS and HDPE pipe, and a series of thermal response tests (TRTs) was conducted to evaluate relative heat exchange efficiency per unit pipe length according to the pipe material and the configuration of energy slabs. The energy slab equipped with the STS pipe shows higher thermal performance than the energy slab with the HDPE pipe. In addition, thermal performance of the wall-type energy slab is almost equivalent to the floor-type energy slab.