• Title/Summary/Keyword: thermal response test

Search Result 235, Processing Time 0.027 seconds

Experiments on Thermal Response of Space Conditioned by a Pl-Controlled VAV System (Pl제어 VAV시스템에 대한 공조공간의 열 응답특성 실험)

  • 문정우;박강순;김서영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • The present study concerns an experiment on the supply-air control in variable air volume (VAV) system with a Pl control logic. A thermal chamber with a Pl control logic is constructed to verify the previously suggested multi-zone model. The stratified thermal model is adopted in the control logic for a thermal chamber cooling test. The effects of taler- mal parameters and control parameters such as supply air temperature and Pl control factor are investigated by implementing the thermal chamber cooling test. The experimental results obtained show that the transient behavior of the air-conditioned space temperature are in good agreement with the simulation results of the stratified thermal model.

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply (3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Lim, Kyoung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

The Involvement of Protein kinase C in Glutamate-Mediated Nociceptive Response at the Spinal Cord of Rats (흰쥐의 척수에서 Glutamate가 매개하는 Nociceptive Response에 있어서 Protein kinase C의 관련성)

  • 김성정;박전희;이영욱;양성준;이종은;이병천;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.263-273
    • /
    • 1999
  • When glutamate was infected intrathecally, the result is similar to those produced by TPA injected. The involvement of protein kinase C (PKC) in the nociceptive responses in rat dorsal horn neurons of lumbar spinal cord was studied. In test with formalin, a PKC inhibitor (chelerythrine) inhibited dose-dependently the formalin-induced behavior response. Neomycin also inhibited it significantly. But, a PKC activator (12-O-tetradecanoylphorbol-13-ester, TPA) showed reverse effect. When gluatamate was injected intrathecally, we observed the result is smilar to those produced by TPA injection. On the other hand, intrathecal injection of glutamate induced thermal and mechanical hyperalgesia. In Tail-flick test, we examined the involvement of PKC on the glutamate-indeced thermal hyperalgesia. Chelerythrine showed an inhibitory effect and TPA enhanced thermal response. Glutamate decreased the mechanical threshold significantly. A pretreatment of chelerythrine and neomycin inhibited glutamate-induced mechanical hyperalgesia, but the effect of neomycin was not significant. TPA had little effect on the mechanical nociceptive response. These results suggest that the PKC activation through metabotropic receptor at postsynaptic region of spinal cord dorsal horn neurons may influence on the persistent nociception produced by chemical stimulation with formalin, thermal and mechanical hyperalgesia induced by glutamate.

  • PDF

Anti-nociceptive and Anti-inflammatory Effect of an Ethanol Extract of The Leaf and Stem of Aralia cordata

  • Jang, Ji Yeon;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.301-305
    • /
    • 2014
  • The aim of our study is to investigate the anti-nociceptive and anti-inflammatory properties of an ethanol extract of the leaf and stem of Aralia cordata. Writhing responses induced by acetic acid, tail immersion test, and formalin-induced paw pain response for nociception and formalin-induced paw edema for inflammation were evaluated in mice. A. cordata (50 - 200 mg/kg, p.o.) and ibuprofen (100 mg/kg, p.o.), a positive non-steroidal anti-inflammatory drugs (NSAIDs), inhibited the acetic acid-induced writhing response, but they did not protect the thermal nociception in tail immersion test. However, morphine (5 mg/kg, s.c.) used as positive opioid control alleviated both the acetic acid-induced writhing response and thermal nociception in tail immersion test. In the formalin test, A. cordata (50 - 200mg/kg) and ibuprofen (200mg/kg) inhibited the second phase response (peripheral inflammatory response), but not the first phase response (central response), whereas morphine inhibited both phase pain responses. Both A. cordata (100 mg/kg) and ibuprofen (200 mg/kg) significantly alleviated the formalin-induced increase of paw thickness, the index of inflammation. These results show for the first time that the leaf and stem of A. cordata has a significant anti-nociceptive effect that seems to be peripheral, but not central. A. cordata also displays an anti-inflammatory activity in an acute inflammation model. The present study supports a possible use of the leaf and stem of A. cordata to treat pain and inflammation.

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

Evaluation of Ground Thermal Conductivity by Performing In-Situ Thermal Response test (TRT) and CFD Back-Analysis (현장 열응답 시험(TRT)과 CFD 역해석을 통한 지반의 열전도도 평가)

  • Park, Moonseo;Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.5-15
    • /
    • 2012
  • In this study, a series of CFD (Computational Fluid Dynamics) numerical analyses were performed in order to evaluate the thermal performance of six full-scale closed-loop vertical ground heat exchangers constructed in a test bed located in Wonju. The circulation HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow fluid and the variation of the surrounding ground temperature with depth were adopted in the FLUENT model. The relevant thermal properties of materials measured in laboratory were used in the numerical analyses to compare the thermal efficiency of various types of the heat exchangers installed in the test bed. The simulation results provide a verification for the in-situ thermal response test (TRT) data. The CFD numerical back-analysis with the ground thermal conductivity of 4 W/mK yielded better agreement with the in-situ thermal response tests than with the ground thermal conductivity of 3 W/mK.

Thermal Response of Sprinklers (스프링클러의 열응답성)

  • 김명배;한용식;윤명오
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.51-57
    • /
    • 1996
  • 반응시간지수(Response Rime Index : RTI)를 사용하여 스프링클러의 열응답(thermal response) 특성을 분류할 수 있다. 반응시간지수는 plunge test에서 균일한 고온의 공기속도의 제곱근과 스프링클러 열감지부의 시정수(time constant)의 곱으로 나타낼 수 있다. 고온의 주위 공기온도에서 스프링클러가 작동하는 시간을 측정하므로서 열감지부의 시정수를 계산할 수 있다. 스프링클러의 RTI가 시정수에 비하여 실험조건에 따른 변화 폭이 적으므로 실제 화재시의 스프링클러 자동시간을 예측하는데에는 RTI가 사용된다. 스프링클러의 작동시간 예측을 위해서는 RTI값과 스프링클러 열감지부 주위의 유속이 필요하며, 유속은 화재의 발열량과 스프링클러가 설치된 구획의 높이로부터 실험식으로 결정된다. 따라서 Plunge test를 이용하여 얻은 스프링클러 열감지부의 기본자료로부터 실화재시의 스프링클러 작동시간을 예측하게 되며, ZONE 모델과 같은 화재 simulation 프로그램과 같이 사용된다면 스프링클러 작동시의 연층의 높이도 예측 가능하게 된다.

  • PDF

Thermal Conductivity from an in-situ Thermal Response Test Compared with Soil and Rock Specimens under Groundwater-bearing Conditions (지하수 부존지역에서의 토질 및 암석 시료와 현장 열응답시험의 열전도도 비교)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • Studies of the thermal properties of various rock types obtained from several locations in Korea have revealed significant differences in thermal conductivities in the thermal response test (TRT), which has been applied to the design of a ground-source heat pump system. In the present study, we aimed to compare the thermal conductivities of the samples with those obtained by TRT. The thermal conductivities of soil and rock samples were 1.32W/m-K and 2.88 W/m-K, respectively. In comparison, the measured TRT value for thermal conductivity was 3.13W/m-K, which is 10% higher than that of the rock samples. We consider that this difference may be due to groundwater flow because abundant groundwater is present in the study area and has a hydraulic conductivity of 0.01. It is natural to consider that the object of TRT is to calculate the original thermal conductivity of the ground, following the line source theory. Therefore, we conclude that the TRT applied to a domestic standing column type well is not suitable for a line source theory. To solve these problems, values of thermal conductivity measured directly from samples should be used in the design of ground-source heat pump systems.

A Study on the Integrated Computer Program for the Multi Analysis of In-Situ Aquifer and Geothermal Response Test (현장 열응답시험과 현장 대수성시험결과를 동시 분석 가능한 통합전산 Program에 관한 연구)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Yonn, Yun-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 2008
  • Groundwater flow in confined aquifer and heat transport in underground geologic media are using same governing equation(line source) like well fuction. Therefore the conventional slope method using only later data obtained from in-situ thermal response test to determine the thermal conductivity of vertical geothermal heat exchanger(GHEX) is basically identical with one of Theis straight line method of aquifer test under artesian condition. In case that the pumping rate(Q, $m^3$/d) and drawdown(s,m) which are used for input data of existing hydrogeologic computer programs for aquifer test are replaced and converted to supplying heat energy per unit length of bore hole(Q/L,w/m or Kcal/h.m) and temperatures (T,$^{\circ}C$)measured at in and out-let of GHEX as in put data respectively, thermal conductivity around geothermal heat exchanger can be easily estimated without any special modification of the existing hydrogeologic computer program. Two numbers of time series temperature variation data obtained from in situ geothermal response test are analized using Theismethods(standard curve and straight line method) by using existing aquifer test program and conventional Slope method proposed by ASHRAE. The results show that thermal conductivity values estimated by two straight methods are identical and the difference of estimated values between standard curve methods and Slope method are also within acceptable ranges. In general,the thermal conductivity estimated from Theis straight linemethod gives more accurate value than the one of Slope method due to that Slope method uses only visual matching otherwise Theis method uses automatic curve matching estimation with reducing RSS.

  • PDF