• 제목/요약/키워드: thermal reaction

검색결과 2,284건 처리시간 0.029초

병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가 (Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics)

  • 오승용;윤영만
    • 한국환경농학회지
    • /
    • 제35권2호
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

Thermal reaction of cinnamate oligomers and their effect on the orientational stability of liquid crystals

  • Hah, Hyun-Dae;Sung, Shi-Joon;Park, Jung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.493-495
    • /
    • 2007
  • Cinnamate groups are well-known for a dimerization reaction upon exposure to ultraviolet irradiation and a thermal reaction after being heated. In this study, to verify the thermal reaction of the cinnamate group in detail, we investigated the thermal crosslinking of cinnamate oligomers. The thermal reaction of cinnamate oligomers of low molecular weight is induced more readily by thermal energy compared with that of cinnamate polymers. The orientation of the liquid crystal depended on the length of the spacers in the cinnamate oligomers.

  • PDF

Effects of Hydro-thermal Reaction Temperature on Anaerobic Biodegradability of Piggery Manure Hydrolysate

  • Kim, Ho;Jeon, Yong-Woo
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.602-609
    • /
    • 2015
  • In order to enhance a biogas production by the hydro-thermal pre-treatment of piggery manure, the effects of hydro-thermal reaction temperature at thermal hydrolysis of piggery manure on the methane potential and anaerobic biodegradability of thermal hydrolysate were analyzed. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ caused the enhancement of hydrolysis efficiency, and most of organic matters were present in soluble forms. However, the methane potentials ($B_u-TCOD$) of hydrolysate were decreased from 0.239 to $0.188Nm^3kg^{-1}-TCOD_{added}$ by increasing hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$, and also the anaerobic biodegradability (DTCOD) decreased from 74.6% to 58.6% with increase of hydro-thermal reaction temperature. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ resulted in the decrease of easily biodegradable organic matter content, while persistent organic matter contents increased.

안료제조시 중화공정의 열안정성 평가 (Evaluation of Thermal Stability in Neutralization Process of Pigment Plant)

  • 이근원;한인수;박상현
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.43-50
    • /
    • 2007
  • Lack of understanding of the process chemistry and thermodynamics are the major reasons that can is lead to thermal runaway reaction in the chemical reaction process. The evaluation of reaction factors and thermal behavior in neutralization process of pigment plant are described in this paper. The experiments were performed in the C 80 calorimeter, and Thermal Screening Unit($TS^{u}$). The aim of the study was to evaluate the results of thermal stability in terms of safety reliability to be practical applications. It suggested that we be proposed safe operating conditions and securities for accident prevention through this study.

메탄개질에서의 아크젯 플라즈마의 역할 (Investigation on The Role of Arc-jet Plasma in Methane Reforming)

  • 황나경;이대훈;송영훈
    • 한국연소학회지
    • /
    • 제11권3호
    • /
    • pp.1-7
    • /
    • 2006
  • A reaction mechanism of methane partial oxidation, which consists of thermal and plasma chemistry reaction pathways, has been investigated using with an arc-jet reactor. The reaction zone of the arc-jet reactor is spatially separated into thermal and non-thermal plasma zone. Methane conversion rates, selectivity of $H_2$ and $C_2$ chemicals in each zone are obtained, which reveals clearly different characteristics of reaction pathways depending on the temperature conditions. The conversion rates obtained in thermal plasma zone is higher than those in non-thermal plasma zone. The selectivity, however, obtained in non-thermal plasma zone is significantly higher than those in thermal plasma zone. Further parametric study on $O_2/C$ ratio, arc length and SED shows that the present process is mainly governed by thermal chemistry pathways.

  • PDF

태양열 화학반응 복합발전시스템의 설계 및 시공 사례 (Design and Construction Experiences of Solar Thermal Chemical Reaction Hybrid Power Generation)

  • 이상남;강용혁;김진수;윤환기;유창균;김종규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.688-692
    • /
    • 2007
  • Solar thermal power generation allows additional benefits of cheap thermal storage and easy hybridization with other fossil fuel-driven power generation. KIER has been performing the project for solar thermal chemical reaction hybrid power generation. The project is to build and operate the first solar thermal chemical reaction hybrid power generation system in Korea. For concentrating solar thermal energy $m^2$ dish type concentrator was adapted and a heliostat is installed for reflecting horizontal insolation to the dish concentrator. At the moment building the dish concentrator including mirror and heliostat with sun tracking system was completed and it's performance are being closely evaluated. This paper will introduce some detailed designs and construction procedures which we have experienced so far.

  • PDF

수열합성반응에 의한 경량콘크리트 블록 개발에 관한 기초적 연구 (The Fundamental Study on the Development of Light Weight Concrete Block by the Hydro-Thermal Synthetic Reaction)

  • 강철;강기웅;정지용;곽은구;권기주;김진만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.461-464
    • /
    • 2005
  • As the research on the development of the lightweight concrete block by the hydro-thermal synthetic reaction mixed with the calcareous material and bottom ash that is used less among siliceous material, we studied on the physical and chemical characteristics in the changes of hydro-thermal synthetic reaction of lightweight concrete block compounded with the PP fiber to increase flexural toughness and to prevent fragility failure. The results of the experiment are as follow. According to the increase of hydro-thermal synthetic reaction and the fiber content, compressive and flexural strength increased. Despite the changes of the hydro-thermal synthetic reaction time, tobermorite was produced on each of the specimens similarly. However, the phase of tobermorite was changed in accordance with the changes of time. Also, $CaCo_{3}$ appeared on the surface of the 9 hour hardened specimen.

  • PDF

Effect of Plasticization of Poly(Vinyl Cinnamate) on Liquid Crystal Orientation Stability

  • Hah, Hyun-Dae;Sung, Shi-Joon;Cho, Ki-Yun;Kim, Won-Sun;Jeong, Yong-Cheol;Park, Jung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1518-1522
    • /
    • 2005
  • A cinnamate group is a well-known compound group used in the dimerization reaction by ultraviolet irradiation, and cinnamate polymers are studied as photoalignment materials. In this study, the radical reaction of cinnamate side groups attached to a flexible polymer backbone is considered feasible using thermal energy. To induce the thermal reaction of cinnamate side groups, we modified the flexibility of poly(vinyl cinnamate) by introducing a plasticizer into the polymers and investigated the thermal reaction behavior of cinnamate side groups. The plasticization of poly(vinyl cinnamate) makes the induction of the thermal reaction of cinnamate side groups easier than that of unmodified poly(vinyl cinnamate). The thermal reaction of cinnamate side groups is closely related to the enhancement of the thermal stability of the liquid crystal orientation of polymer films with polarized UV irradiation.

  • PDF

음폐수의 열가수분해 최적조건 도출과 생물학적 탈질공정에서 열가용화액의 적용 가능성에 관한 연구 (A Study on Optimum Conditions Derivation on Thermal Hydrolysis of Food Wastewater and the Applicability of the Thermal Solubilization in Biological Denitrification Process)

  • 이기희;류희구;주현종
    • 한국물환경학회지
    • /
    • 제31권2호
    • /
    • pp.151-158
    • /
    • 2015
  • The aim of this research is to derive an optimum operating condition for the thermal solubilization equipment that is employed to increase concentration of soluble organic materials and to assess whether it would be possible to use the waste sludge generated by thermal solubilization reaction as an external carbon source in biological denitrification process. For the purpose, we have constituted a laboratory-size thermal solubilization equipment and have assessed thermal hydrolysis efficiency based on various reaction temperature and reaction time. We have also derived SDNR using the waste sludge generated by thermal solubilization reaction through a batch experiment. As a result of research, the highest thermal hydrolysis efficiency of about 42.8% was achieved at $190^{\circ}C$ of reaction temperature and at 90 minutes of reaction time. And when SDNR was derived using the waste sludge, the value obtained was $0.080{\sim}0.094\;g\;NO_3{^-}-N/g\;MLVSS{\cdot}day$, showing SDNR that is higher than that obtained by the results of existing researches that used common wastewater as an external carbon source. Accordingly, in view of the fact that food wastes vary quite a bit in characteristics based on the area they are generated from and seasonal change, it seems that a flexible operation of thermal solubilization equipment is required through on-going monitoring of food wastes that are imported to food wastes recycling facilities.

비닐아세테이트 중합공정에서 원료물질의 열적 안정성 평가 (An Evaluation of Thermal Stability of Raw Materials in the Vinyl Acetate Polymerization Process)

  • 이근원;한인수;이정석
    • 한국안전학회지
    • /
    • 제25권3호
    • /
    • pp.61-65
    • /
    • 2010
  • Most of the chemical reactions performed in the chemical industry are exothermic, meaning that thermal energy is released during the reaction. It is also important to understand the thermal hazards such as thermal stabilities and runaway reactions, which are governed by thermodynamics and reaction kinetics of the mixed materials. The paper was described the evaluation of thermal behavior caused by an exothermic batch process in manufacture of the vinyl acetate resin. The aim of the study was to evaluate the thermal stabilities of raw materials with operating conditions such as a reaction inhibitor, heating rate, reaction atmosphere and the mount of methanol charged in the vinyl acetate polymerization process. The experiments were performed in the differential scanning calorimeter(DSC), C 80 calorimeter, and thermal screening unit($TS^u$). It was suggested that we should provide the thermal characteristics for raw materials to present safe precautions with operating conditions in the vinyl acetate polymerization process.