• 제목/요약/키워드: thermal pyrolysis

검색결과 286건 처리시간 0.025초

실험 계획법을 이용한 $Al(OH)_3$ 첨가량에 따른 고무의 난연 특성 연구 (The Study on the Flame Retardancy of Rubber according to $Al(OH)_3$ Addition Using Experimental Design Method)

  • 민영초;강윤진;김기영;강경식
    • 대한안전경영과학회지
    • /
    • 제10권4호
    • /
    • pp.121-126
    • /
    • 2008
  • The effect of $Al(OH)_3$ on physical, thermal, and retardant property of rubber was studied. It was analyzed by statistical experimental design method with one way array to confirm the effect of factors. Physical characteristics, thermal pyrolysis temperature, and combustion time were considered as the properties. The amount of $Al(OH)_3$ addition was chosen as significant parameter. As the result of ANOVA analysis, thermal pyrolysis temperature increased and combustion time decreased with increasing of $Al(OH)_3$.

Pyrolysis kinetics and microstructure of thermal conversion products on toluene soluble component from two kinds of modified pitch

  • Zhu, Yaming;Zhao, Xuefei;Gao, Lijuan;Cheng, Junxia
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.38-46
    • /
    • 2018
  • Modified pitch A (MPA) and modified pitch B (MPB) were prepared by oxidative polymerization and thermal polycondensation reaction with refined pitch as the raw material, respectively. The toluene soluble components (TS-1 and TS-2) were obtained by solvent extraction from MPA and MPB, separately. The Flynn-Wall-Ozawa method and Kissinger-Akahira-Sunose method were used to calculate the pyrolysis activation energy of TS. The Satava-Sestak method was used to investigate the pyrolysis kinetic parameters of TS. Moreover, the optical microstructure of the thermal conversion products (TS-1-P and TS-2-P) by calcination shows that TS-1-P has more contents of mosaic structure and lower contents of fine fiber structure than TS-2-P. The research result obtained by a combination of X-ray diffraction and the curve-fitting method revealed that the ratios of ordered carbon crystallite (Ig) in TS-1-P and TS-2-P were 0.3793 and 0.4417, respectively. The distributions of carbon crystallite on TS-1-P and TS-2-P were calculated by Raman spectrum and curve-fitting analysis. They show that the thermal conversion product of TS-2 has a better graphite crystallite structure than TS-1.

연료의 열분해특성과 비예혼합 제트화염의 부상특성에 관한 기초실험 (Basic Experimental Study on Characteristics of Fuel Pyrolysis and Lift-off of Non-premixed Jet-flame)

  • 전민규;이민정;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.119-121
    • /
    • 2014
  • In general, high temperature combustion technique has been adopted as an efficient one. However, hydrocarbon-based fuel can be decomposed under high temperature, and it can affect the stabilization mechanism of edge flame. In this research, basic experimental study was conducted to identify the effect of fuel pyrolysis on the lift-off flame stabilization by changing the temperature of the plug flow reactor. Schmidt number of the gas fuel can be changed with temperature variation due to the fuel pyrolysis. Eventually, this study will help to establish and clarify the stabilization mechanism of lift-off edge flame.

  • PDF

Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

  • Lee, Sang-Mook;Jin, Byung-Suk;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • 제14권5호
    • /
    • pp.491-498
    • /
    • 2006
  • The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.

인도네시아산 자원 내에 포함된 역청성 오일의 경질화를 위한 열분해 특성에 관한 연구 (Study on Pyrolysis Characteristics for Upgrading of Bitumen-Like Heavy Oil Contained in Indonesian Resources)

  • 장정희;한기보;박천규;전철환;김재곤;곽현
    • 청정기술
    • /
    • 제22권4호
    • /
    • pp.292-298
    • /
    • 2016
  • 본 연구에서는 인도네시아 현지로부터 수급된 지층 자원에 포함된 역청성 오일의 경질화를 위하여 열분해 공정이 적용되었다. 이러한 자원 내에 포함된 역청성 오일에 대한 조성 및 기초성상을 조사하기 위하여 공업분석, 원소분석 등이 수행되었으며, 열중량분석을 통해 역청성 오일의 전환에 대한 열분해반응 기초특성이 조사되었다. 이러한 결과를 바탕으로 원료 내에 포함된 역청성 오일을 경질화하기 위하여 필요한 열분해 온도 등의 운전조건 범위가 선정되었으며, 실험실 규모의 고정층 반응기를 이용하여 반응온도에 따른 역청성 오일의 전환율 및 열분해 오일의 회수율을 확인하였다. $550^{\circ}C$에서 수행된 열분해 공정에서 원료 내 포함된 역청성 오일의 전환율은 약 21%였으며, 경질화된 열분해 오일의 회수율은 약 80%였다.

초음파 분무열분해를 이용한 $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ 분말의 합성 (Synthesis of $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ Powder by Ultrasonic Spray Pyrolysis)

  • 박양수;심수만
    • 한국세라믹학회지
    • /
    • 제35권11호
    • /
    • pp.1171-1181
    • /
    • 1998
  • $SrZr_{0.95}$$Y_{0.05}$$O_{2.975}$ powder was synthesized by ultrasonic spray pyrolysis using a solution that Sr carbonate and Zr and Y nitrates were dissolved in a citric acid solution. The processes of particle formation were in-vestigated with respect to solution properties and pyrolysis temperature. With changing the solution con-centration form 0.1M to 0.01M there was a tendency that average sizes of droplets and particles were de-creased and their size distributions were narrowed. Citrate functional groups converted the droplets into gel particles which prevented an inhomogeneous precipitation of the metal ions and facilitated the diffusion of gases during thermal decomposition. As a result the powder having spherical particles without hollow par-ticles could be prepared. Low pyrolysis temperature led to amorphous particles due to incomplete pyrolysis and made the particles difficult to maintain spherical shape due to retarded gelation of the droplets. Whereas higher pyrolysis temperature produced hollow and broken particles because the droplets un-derwent rapid gelationand decomposition. The particles obtained at two pyrolysis temperature $500^{\circ}$and $1000^{\circ}C$ consisted of a perovskite phase and a very small amount of $SrCO_3$ However after calcination at $1000^{\circ}C$ the particles contained a single perovskite phase having an average particle size of 0.63${\mu}{\textrm}{m}$ and an apparent density near to the theoretical density.

  • PDF

열분해 용융 소각로 설계인자 도출을 위한 수치해석적 연구 (A numerical study on design parameters of pyrolysis-melting incinerator)

  • 신동훈;전병일;이진호;황정호;류태우;박대규
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.243-250
    • /
    • 2003
  • The present study discuss about numerical methods to analyze design parameters of pyrolysis-melting incineration system. Various numerical methods of different viewpoint are introduced to simulate the performance of the system. Process analysis of the overall system is the beginning procedure of basic design process. Heat and material flow of each element are connected and are influential to each other, hence, an appropriate process modeling should be executed to prevent from unacceptable process design concepts that may results in system failure. Models to simulate performance of each elementary facility generate valuable informations on design and operation parameters, and, derive the basic design concept to be optimized. A pyrolysis model derived from waste bed combustion model is introduced to simulate the mass conversion and heat transfer in the pyrolysis process. CFD(Computational fluid dynamics) is an effective method to optimize the thermal reacting flow in various reactors such as combustor and heat exchanger. Secondary air jets arrangement and the shape of the combustor could be optimized by CFD technology.

  • PDF

Pyrolysis of Lignin Obtained from Cinnamyl Alcohol Dehydrogenase (CAD) Downregulated Arabidopsis Thaliana

  • Kim, Kwang Ho;Kim, Jae-Young;Kim, Chang Soo;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.442-450
    • /
    • 2019
  • Despite its potential as a renewable source for fuels and chemicals, lignin valorization still faces technical challenges in many aspects. Overcoming such challenges associated with the chemical recalcitrance of lignin can provide many opportunities to innovate existing and emerging biorefineries. In this work, we leveraged a biomass genetic engineering technology to produce phenolic aldehyde-rich lignin structure via downregulation of cinnamyl alcohol dehydrogenase (CAD). The structurally altered lignin obtained from the Arabidopsis thaliana CAD mutant was pyrolyzed to understand the effect of structural alteration on thermal behavior of lignin. The pyrolysis was conducted at 400 and $500^{\circ}C$ using an analytical pyrolyzer connected with GC/MS and the products were systematically analyzed. The results indicate that aldehyde-rich lignin undergoes fragmentation reaction during pyrolysis forming a considerable amount of C6 units. Also, it was speculated that highly reactive phenolic aldehydes facilitate secondary repolymerization reaction as described by the lower yield of overall phenolic compounds compared to wild type (WT) lignin. Quantum mechanical calculation clearly shows the higher electrophilicity of transgenic lignin than that of WT, which could promote both fragmentation and recondensation reactions. This work provides mechanistic insights toward biomass genetic engineering and its application to the pyrolysis allowing to establish sustainable biorefinery in the future.