• Title/Summary/Keyword: thermal processes

검색결과 1,085건 처리시간 0.024초

Dual-Curable Acrylic Pressure-Sensitive Adhesives Based on UV and Thermal Processes

  • Kim, Yang-Bae;Park, Su-Cheol;Kim, Hyun-Kyoung;Hong, Jin-Who
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.128-133
    • /
    • 2008
  • Several dual-curable acrylic pressure-sensitive adhesives (PSA) were synthesized by the radical polymerization of acrylic monomers containing benzophenone, hydroxyl, and alkyl groups. The optimum extent of UV-induced cure was determined by varying the content of the benzophenone groups (the photoinitiator) from 0.5 to 1.5 wt%. The weight average molecular weight of the polymers obtained ranged from 300,000 to 700,000 amu. The coated pressure-sensitive adhesives were cured either by short UV exposure to induce the grafting of acrylic polymers, or by heating for 6 hat $60^{\circ}C$ to promote the reactions between the polyisocyanates and hydroxyl groups. The dual-curing behavior was determined by monitoring both processes quantitatively by infrared spectroscopy. The developed dual-curable acrylic pressure-sensitive adhesives were found to compensate for the limitations in UV-induced curing of thick coatings.

Numerical Modeling of Combustion Processes and Pollutant Formations in Direct-Injection Diesel Engines

  • Kim, Yong-Mo;Lee, Joon-Kyu;Ahn, Jae-Hyun;Kim, Seong-Ku
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.1009-1018
    • /
    • 2002
  • The Representative Interactive Flamelet (RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the direct injection diesel engine. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the RIF concept has the capabilities to predict the auto-ignition and subsequent flame propagation in the diesel engine combustion chamber as well as to effectively account for the detailed mechanisms of soot formation, NOx formation including thermal NO path, prompt and nitrous 70x formation, and reburning process. Special emphasis is given to the turbulent combustion model which properly accounts for vaporization effects on the mixture fraction fluctuations and the pdf model. The results of numerical modeling using the RIF concept are compared with experimental data and with numerical results of the commonly applied procedure which the low-temperature and high-temperature oxidation processes are represented by the Shell ignition model and the eddy dissipation model, respectively. Numerical results indicate that the RIF approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay time and location as well as the pollutant formation.

석유정제산업 공정과 공정장비에 기인한 휘발성 유해 대기오염물질(HAPs)의 배출량 산정기법 (Estimation Technique of Volatile Hazardous Air Pollutants(HAPs) Emitted from Petroleum Industrial Process/Equipment)

  • 조완근;권기동;동종인;강경희
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.703-710
    • /
    • 2004
  • Petroleum refineries have been considered as an important emission source for atmospheric volatile hazardous air pollutants(HAPs). The emission source includes petroleum refinery processes and process equipment. The control strategy for volatile HAPs requires emission estimations of these pollutants. However, systematic methods of volatile HAPs emission from petroleum refineries have not yet been established. Accordingly, present study surveyed the estimation method of volatile HAPs emitted from the petroleum refinery processes and process equipment. The emission estimation methods for the petroleum refinery processes are applied for 11 petroleum refining facilities: fluidized catalytic cracking, thermal cracking, moving bed catalytic cracking, compressed engine, blowdown system, vacuum distilled column condensator, natural gas or distilled boiler, natural gas or distilled heater, oil boiler, oil heater and flare. Four emission estimation methods applied for the petroleum refinery process equipment are as follows: average emission factor approach, screening ranges approach, EPA correlation approach and unit-specific correlation approach. The process equipment for which emission factors are available are valves, pump seals, connectors, flanges and open-ended lines.

New Mechanism of Thin Film Growth by Charged Clusters

  • Hwang, Nong-Moon;Kim, Doh-Yeon
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.115-127
    • /
    • 1999
  • The charged clusters or particles, which contain hundreds to thousands of atoms or even more, are suggested to form in the gas phase in the thin film processes such as CVD, thermal evaporation, laser ablation, and flame deposition. All of these processes are also used in the gas phase synthesis of the nanoparticles. Ion-induced or photo-induced nucleation is the main mechanism for the formation of these nanoclusters or nanoparticles inthe gas phase. Charged clusters can make a dense film because of its self-organizing characteristics while neutral ones make a porous skeletal structure because of its Brownian coagulation. The charged cluster model can successfully explain the unusual phenomenon of simultaneous deposition and etching taking place in diamond and silicon CVD processes. It also provides a new interpretation on the selective deposition on a conducting material in the CVDd process. The epitaxial sticking of the charged clusters on the growing surface is gettign difficult as the cluster size increases, resulting in the nanostructure such as cauliflowr or granular structures.

  • PDF

Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti

  • Auguste, Appia Foffie Thiery;Quand-Meme, Gnamba Corneil;Ollo, Kambire;Mohamed, Berte;Sahi placide, Sadia;Ibrahima, Sanogo;Lassine, Ouattara
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.82-89
    • /
    • 2016
  • In this work, a ruthenium dioxide electrode has been prepared by thermal decomposition at 400 ℃ then used for the oxidation of commercial amoxicillin. The physical characterization showed that RuO2 electrode presents a mud cracked structure. Its electrochemical characterization has revealed an increase of the voltammetric charge in acid electrolyte compared to neutral electrolyte indicating the importance of protons in its surface redox processes. The voltammetric study of the oxidation of amoxicillin has been investigated. It has been obtained that the oxidation of amoxicillin is controlled by both adsorption and diffusion processes. Moreover, the oxidation of amoxicillin occurs via direct and indirect processes in free or electrolyte containing chlorides. Through preparative electrolysis, enhancement of amoxicillin oxidation was observed in the presence of chloride where the amoxicillin degradation yield reached more than 50 % compared to less than 5% in the absence of chlorides. Spectrophotometric investigations have revealed the degradation of intermediates absorbing at 350 nm.

Alternative Breaching Methods of the TRISO Fuels

  • Lee Jong-Hyeon;Shim Joon-Bo;Ahn Byung-Gil;Kwon Sang-Woon;Kim Eung-Ho;Yoo Jae-Hyung;Park Seong-Won
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.92-106
    • /
    • 2005
  • The head-end processes of spent TRISO fuel have been reviewed to understand the current status and the limitations of the reported processes. The main concerns in the TRISO treatment are to effectively breach and separate the carbon and SiC layers composing the TRISO particles. The crush-bum scheme which was considered in the early stages of the development has been replaced by the crush-leach or $CO_2$ burning and the succeeding CO decomposition process because of a sequestration problem of $CO_2$ containing $^{14}C$. However there are still many obstacles to overcome in the reported processes. Hence, innovative thermomechanical and pyrochemical concepts to breach the coating layers of the TRISO particle with a minimized amount of second waste are proposed in this paper and their principles are described in detail.

  • PDF

New mechanism of thin film growth by charged clusters

  • Hwang, Nong-Moon;Kim, Doh-Yeon
    • 한국결정성장학회지
    • /
    • 제9권3호
    • /
    • pp.289-294
    • /
    • 1999
  • The charged clusters or particles, which contain hundreds to thousands of atoms or even more, are suggested to from in the gas phase in the thin film processes such as CVD, thermal evaporation, laser ablation, and flame deposition. All of these processes are also phase synthesis of the nanoparticels. Ion-induced or photo-induced nucleation is the main mechanism for the formation of these nanoclusters or nanoparticles in the gas phase. Charge clusters can make a dense film because of its self-organizing characteristics while neutral ones make a porous skeletal structure because of its Brownian coagulation. The charged cluster model can successfully explain the unusual phenomenon of simultaneous deposition and etching taking place in diamond and silicon CVD processes. It also provides a new interpretation on the selective deposition on a conducting material in the CVD process. The epitaxial sticking of the charged clusters on the growing surface is getting difficult as the cluster size increases, resulting in the nanostructure such as cauliflower or granular structures.

  • PDF

Hybrid salts precipitation-nanofiltration pretreatment of MSF and RO seawater desalination feed

  • Al-Rawajfeh, Aiman Eid
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.253-266
    • /
    • 2012
  • In this work, the effect of hybrid salts precipitation-nanofiltration (SP-NF) process on the scale deposits in thermal and membrane desalination processes has been studied. The analysis was carried out to study the scale formation from the Arabian Gulf seawater in MSF and RO reference processes by changing the percentage of pretreatment from 0 to 100%. Four different SP-NF configurations were suggested. A targeted Top Brine Temperature (TBT) of $130^{\circ}C$ may be achieved if 30% portion is pretreated by SP and/or NF processes. As a rule of thumb, each 1% pretreatment portion increases the reference TBT of $115^{\circ}C$ by $0.6^{\circ}C$. For both MSF and RO, parallel pretreatment of certain percentage of the feed by SP and the rest by NF, showed the lowest scale values. The case showed the best values for sulfate scale prevention and the highest values of increasing the monovalent ions relative to the divalent scale forming ions. Sulfate scale is significant in MSF process while carbonate scale is significant in RO. Salt precipitation was suggested because it is less costly than nanofiltration, but nanofiltration was used here because it is efficient in sulfate ions removal.

Gate Workfunction Optimization of a 32 nm Metal Gate MOSFET for Low Power Applications

  • Oh Yong-Ho;Kim Young-Min
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.237-240
    • /
    • 2006
  • The feasibility of a midgap metal gate is investigated for a 32 nm MOSFET for low power applications. The midgap metal gate MOSFET is found to deliver $I_{on}$ as high as a bandedge gate if a proper retrograde channel is used. An adequate design of the retrograde channel is essential to achieve the performance requirement given in the ITRS roadmap. A process simulation is also run to evaluate the feasibility of the necessary retrograde profile in manufacturing environments. Based on the simulated result, it is found that any subsequent thermal process should be tightly controlled to retain transistor performance, which is achieved using the retrograde doping profile. Also, the bandedge gate MOSFET is determined be more vulnerable to the subsequent thermal processes than the midgap gate MOSFET. A guideline for gate workfunction $(\Phi_m)$ is suggested for the 32 nm MOSFET.

유리기판에 sol-gel법으로 제조된 나노입자 Co-ferrite 박막의 특성 (Nanoparticulate Co-Ferrite Thin Films on Glass Substrate Prepared by Sol-Gel Method)

  • 오영제;최현석;최세영
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.425-431
    • /
    • 2000
  • Cobalt ferrite thin films on Corming glass substrate were fabricated by a sol-gel method. Cobalt ferrite thin films with the grain size of 20-35 nm and thickness of 50nm were obtained. Rapid thermal annealing (RTA) and Annealing processes were adopted for comparison of characteristics of the films. Coercivity values were changed with thermal condition and magnetization values were increased as a function of soaking time. With prolonged soaking time, however, it was decreased because of the diffusion of cations from the glass substrate. The RTA process in preparation of cobalt ferrite thin film was the effective way to prevent and to form a single spinel phase in reduced soaking time. The film heated at 600$^{\circ}C$ for 30 minutes by RTA had coercivity of 2,600 Oe, saturation magnetization 460 emu/㎤, and Mr$.$$\delta$ of 1.43 memu/$\textrm{cm}^2$.

  • PDF