• Title/Summary/Keyword: thermal power generation plant

Search Result 153, Processing Time 0.025 seconds

He Generation Evaluation on Electrodeposited Ni After Neutron Exposure (중성자 조사에 따른 Ni도금피복재에서의 He발생량평가)

  • Hwang, Seong Sik;Kwon, Junhyun;Kim, Dong Jin;Kim, Sung Woo
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.308-314
    • /
    • 2021
  • Neutron dose level at bottom head of a reactor pressure vessel (RPV) was calculated using reactor vessel neutron transport for a Korean nuclear power plant A. At 34 EFPY with a 40-year (2042) design life after plating repair, irradiation fast neutron effect was 6.6x1015 n/cm2. As helium(He) gas can be generated by Ni only at 1/106 level of 5 × 1021 n/cm2, He generation possibility in the Ni plating layer is very little during 40 years of operation (2042, 34 EFPY). Thermal neutrons can significantly affect the generation of He from Ni metal. At 10 years after a repair, He can be generated at a level of about 0.06 appm, a level that can add general welding repair without any consideration. After 40 years of repair, 9.8 appm of He may be generated. Although this is a rather high value, it is within the range of 0.1 to 10 appm when welding repair can be applied. Clad repair by Ni electroplating technology is expected to greatly improve the operation efficiency by improving the safety and shortening the maintenance period of the nuclear power plant.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Careful Determination of Inservice Inspection of piping by Computer Analysis in Nuclear Power Plant (배관해석에 의한 원전 배관부의 검사부위 선정)

  • Lim, H.T.;Lee, S.L.;Lee, J.P.;Kim, B.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.2
    • /
    • pp.14-20
    • /
    • 1992
  • Stress analysis has been performed using computer program ANSYS in the pressurizer surge line in accordance with ASME Sec. III in order to predict possibility of fatigue failure due to thermal stratification phenomena in pipes connected to reactor coolant system of nuclear power plants. Highly vulnerable area to crack generation has been chosen by the analysis of fatigue due to thermal stress in pressurizer surge line. This kind of result can be helpful to choose the location requiring intensive care during inservice inspection of nuclear power plants.

  • PDF

Collaboration and Confucian Reflexivity in Local Energy Governance: The Case of Seoul's One Less Nuclear Power Plant Initiatives

  • Lee, Youhyun;Bae, Suho
    • Journal of Contemporary Eastern Asia
    • /
    • v.18 no.1
    • /
    • pp.153-174
    • /
    • 2019
  • South Korea's energy policy has been historically established through an energy production structure that relies on thermal and nuclear power generation in relation to a centralized 'Hard Energy System'. However, climate change issues are forcing the transition to renewable energy, and it is crucial for local governments to enable this. This study analyses Seoul city's local energy governance, which is known as One Less Nuclear Power Plant Initiative, by applying the collaborative governance framework inspired by Ansell and Gash (2008) and the Reflexivity framework of Confucianism. It is considered that the local energy governance model of Seoul city can be used as a model by other local governments, and it will eventually lead to a decentralized energy system in this era of energy transition.

Performance Characteristics of the 300 MW Integrated Gasification Combined Cycle Plant according to Ambient Temperature (대기온도에 따른 300 MW 석탄가스화복합발전 성능특성)

  • Kim, Young-Mook;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2018
  • In this study, the output and thermal efficiency of Taean Integrated Gasification Combined Cycle Plant were calculated by using the manufacturer's basic design data and the performance correction factor for each atmospheric temperature, and the actual performance was measured at summer and winter representative points. The results were compared with the calculated values to verify their validity. The thermal efficiency is the highest at around $15^{\circ}C$ and lower at lower temperature and higher temperature. This is similar to that of natural gas Combined Cycle Power Plant, but the thermal efficiency has drastically decreased due to the increase of power consumption of the air separation unit at relatively high temperature. The output is highest in the range of 5 to $15^{\circ}C$, and is kept almost constant at below $5^{\circ}C$ and declines above $15^{\circ}C$. The reason why the output does not increase at low temperatures is that the torque limit of the shaft is activated by the increase of the flow rate due to the nitrogen injection of the gas turbine combustor. In order to improve the performance in the future, efforts should be made to improve the power generation output and to reduce the power consumption of the air separation unit in summer.

  • PDF

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.

Simulation Study on Liquid Air Energy Storage (LAES) System using Dual Refrigeration Cycles and Thermal Oil Circulation (냉매사이클과 열매체유 순환을 활용한 액화공기에너지저장 시스템 공정모사 연구)

  • Jang, Soonnam;Park, Jongpo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.63-73
    • /
    • 2018
  • Innovative technical process for Energy Storage System (ESS), Liquid Air Energy Storage system (LAES) is mature technologies based on the gas liquefaction process. In spite of many advantages such as high energy density, no geographical constraints, low investment costs and long useful life, the system has not yet widely commercialized due to low round trip efficiency. To improve RTE and acquire high yield of liquid air, various configurations of LAES process have been considered. In this research, dual refrigerants cycle (R-600a and methanol) for air liquefaction and thermal oil circulation for power generation via liquid air gasification have been applied to improve cycle performance significantly using Aspen HYSYS simulator.

Optimal Generation Planning Including Pumped-Storage Plant Based on Analytic Cost Function and Maximum Principle (해석적 비용함수와 최대원리리에 의한 양수운전을 포함하는 최적전원계획)

  • 박영문;이봉용
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.8
    • /
    • pp.308-316
    • /
    • 1985
  • This paper proposes an analytic tool for long-term generation expansion planning based on the maximum principle. Many research works have been performed in the field of generation expansion planning. But few works can be found with the maxinmum principle. A recently published one worked by professor Young Moon Park et al. shows remarkable improvements in modeling and computation. But this modeling allows only thermal units. This paper has extended Professor Park's model so that the optimal pumped-storage operation is taken into account. So the ability for practical application is enhanced. In addition, the analytic supply-shortage cost function is included. The maximum principle is solved by gradient search due to its simplicity. Every iteration is treated as if mathematical programming such that all controls from the initial to the terminal time are manipulated within the same plane. Proposed methodology is tested in a real scale power system and the simulation results are compared with other available package. Capability of proposed method is fully demonstrated. It is expected that the proposed method can be served as a powerful analytic tool for long-term generation expansion planning.

  • PDF

A Feasibility Study on Geothermal Power Plant in Korea (한국형 지열발전 타당성 연구)

  • Lim, Hyo-Jae;Kwon, Jung-Tae;Kim, Geum-Soo;Chang, Ki-Chang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.39-44
    • /
    • 2009
  • Geothermal energy is the heat contained in the earth and its internal fluids. Geothermal energy is stored as sensible or latent heat. Supplied by both internal and external sources, it represents a vast supply which is only started to be tapped for generation of electric power. In general, this is natural dry or wet medium to high enthalpy steam at temperatures above $150^{\circ}C$. For some time, binary systems employing substances with a lower boiling point than water in a secondary circuit have been used to generate vapor for driving turbines at a lower temperature level. The utilization of binary plants and the possibility of production from enhanced geothermal systems can expand its availability on a worldwide basis. The geothermal electricity installed capacity is approaching the 10,000GW threshold. Geothermal energy is not present everywhere, but its baseload capability is a very important factor for its success.

  • PDF

Characteristics of Carbonaceous Particles Derived from Coal-fired Power Plant and Their Reduction (석탄 화력발전소에서 발생하는 미연분의 특성분석 및 저감방법)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Geun-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1065-1073
    • /
    • 2006
  • The unturned carbon in fly ash, recently occurred in the coal-fired Yong Hung power station, caused some problems in ash utilization and boiler efficiency. This paper describes the analysis of unburned carbon and six coals, some tests performed at Yong Hung Boiler, and the results of combustion modification for the reduction of unburned carbon in fly ash. From the physical and chemical analysis of unburned carbon in fly ash, most particles were turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD(Chemical Percolation Devolatilization) model. The results showed that the higher potential was presented to Peabody, Arthur, Shenhua coals rather than other coals. It was necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unturned carbon in ash by increasing the excess air and changing the SOFA's yaw angle.