• 제목/요약/키워드: thermal postbuckling analysis

검색결과 9건 처리시간 0.021초

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

Thermal postbuckling of imperfect Reissner-Mindlin plates with two free side edges and resting on elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.643-658
    • /
    • 1998
  • A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to uniform or nonuniform tent-like temperature loading and resting on an elastic foundation. The plate is assumed to be simply supported on its two opposite edges and the two side edges remain free. The initial geometrical imperfection of the plate is taken into account. The formulation are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including plate-foundation interaction and thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick plates resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winker elastic foundations follow as a limiting case. Typical results are presented in dimensionless graphical form.

Thermomechanical postbuckling of imperfect moderately thick plates on two-parameter elastic foundations

  • Shen, Hui-Shen
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.149-162
    • /
    • 1996
  • A postbuckling analysis is presented for a simply supported, moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading and resting on a two-parameter elastic foundation. The two cases of thermal postbuckling of initially compressed plates and of compressive postbuckling of initially heated plates are considered. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the first order shear deformation effect, and including the plate-foundation interaction and thermal effect. The analysis uses a deflection-type perturbation technique to determine the buckling loads and postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, moderately thick plates resting on Winkler or Pasternak-type elastic foundations. Typical results are presented in dimensionless graphical form.

열하중을 받는 복합적층 원통형 패널의 좌굴후 거동 및 진동해석 (Postbuckling and Vibration Analysis of Cylindrical Composite Panel subject to Thermal Loads)

  • 오일권;이인
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.148-156
    • /
    • 1999
  • 유한요소기법을 적용하여 열하중을 받는 원통형 복합적층 패널의 좌굴후 거동해석 및 진동 특성을 연구하였다. 열적 대변형을 고려하기 위해 층별변위장이론을 바탕으로 한 von-Karman 비선형 변위-변형률 관계식을 적용하였다. 원통형 패널의 스냅핑 현상을 해석하기 위해서 원통형 호길이법이 사용되었다. 원통형 패널의 두께비, shallowness angle 그리고 경계조건 등 여러 가지 구조 파라미터에 따라 열적 스냅핑과 진동 특성을 고찰하였다. 열적 스냅핑 특성이 정적인 변형뿐만 아니라 진동 모드 형상 및 순서를 변화시키고 있음을 보여준다.

  • PDF

형상기억합금 선을 삽입한 복합적층 보의 열좌굴 및 좌굴후 거동에 관한 연구 (A study on the Thermal Buckling and Postbuckling of a Laminated Composite Beam with Embedded SMA Actuators)

  • 최섭;이정주;이동춘
    • Composites Research
    • /
    • 제12권3호
    • /
    • pp.55-65
    • /
    • 1999
  • 형상기억합금 선을 삽입한 복합적층 보의 열좌굴 및 좌굴후 거동을 해석 및 실험적으로 고찰하였다. 균일한 온도분포, 양단고정 상태에서 형상기억합금 선을 삽입한 복합적층 보의 열좌굴 거동을 나타내었고 검토하였다. 삽입한 형상기억합금 선의 형상회복력은 복합적층 보의 열팽창 변형률을 감소시킴으로써 임계좌굴온도를 증가시키고 좌굴후 거동에서 횡방향 변형을 감소시키는 결과를 얻을 수 있었다. 형상회복력이 열좌굴에 미치는 영향을 온도-하중-횡방향 변위의 거동결과에서 세장비, 기하학적 초기결함, 형상기억합금 선의 삽입 위치 등의 설계변수를 고려하여 정량적으로 나타내었다. 온도-횡방향 변형의 결과로부터 임계좌굴온도를 구하는 접선교차점의 방법을 제안하였다. 열좌굴 및 좌굴후 거동에서 실험결과의 해석을 바탕으로 형상회복력이 임계좌굴온도에 미치는 영향을 나타내는 이론적인 식을 제시하였다.

  • PDF

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

열-랜덤 음향 하중을 받는 보강된 복합재 패널의 비선형 진동 해석 (Nonlinear Vibration Analyses of Stiffened Composite Panels under Combined Thermal and Random Acoustic Loads)

  • 최인준;이홍범;박재상;김인걸
    • 한국군사과학기술학회지
    • /
    • 제23권6호
    • /
    • pp.533-541
    • /
    • 2020
  • This study using ABAQUS investigates the nonlinear vibration responses when thermal and random acoustic loads are applied simultaneously to the stiffened composite panels. The nonlinear vibration analyses are performed with changing the number of stiffeners, and layup condition of the skin panel. The panel and stiffeners both are modeled using shell elements. Thermal load (ΔT) is assumed to have the temperature gradient through the thickness direction of the stiffened composite panel. The random acoustic load is represented as stationary white-Gaussian random pressure with zero mean and uniform magnitude over the panels. The thermal postbuckling analysis is conducted using RIKS method, and the nonlinear dynamic analysis is performed using Hilber-HughesTaylor time integration method. When ΔT = 25.18 ℃ and SPL = 105 dB are applied to the stiffened composite panel, the effect of the number of stiffener is investigated, and the snap-through responses are observed for composite panels without stiffeners and with 1 and 3 stiffeners. For investigation of the effect of layup condition of the skin panel, when ΔT = 38.53 ℃ and SPL = 110 dB are applied to the stiffened composite panel, the snap-through responses are shown when the fiber angle of the skin panel is 0°, 30°, and 60°.

온도에 의한 궤도의 후좌굴 거동 (Post-Buckling Behavior of the Track due to Temperature)

  • 임남형;이지하;강윤석;양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.442-447
    • /
    • 2003
  • The actual behavior of the railroad track structure is suspected to be a complex interaction between the vertical, lateral, longitudinal, and torsional behaviors. A FE program are developed in the present study to be used for extensive nonlinear analysis of the track structures subjected to thermal load. Using the rigorous study on the deformed shape of the rail and tie, and stress resultants, characteristics of the three dimensional behavior are investigated. It is found that the flexural rigidity of the tie and the rotational stiffness of pad-fastener can be affect the behavior of the track structure and the postbuckling behavior in each rail, except lateral behavior, is not same.

  • PDF