• Title/Summary/Keyword: thermal milk processing

Search Result 14, Processing Time 0.019 seconds

Thermal Resistance Characteristics of Bacillus cereus, Escherichia coli O157:H7, and Listeria monocytogenes in a Multi-grain Soy Milk Product (레토르트 곡물 두유 내 Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes의 내열특성)

  • Kim, Nam Hee;Koo, Jae Myung;Rhee, Min Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.593-598
    • /
    • 2015
  • This study determined the thermal resistance of Bacillus cereus, Escherichia coli O157:H7, and Listeria monocytogenes in multi-grain soymilk and proposes processing conditions that meet the national standard for retort food products in Korea. D and z values were calculated from thermal inactivation kinetic curves after heating at 55, 60, and $65^{\circ}C$. The D value for B. cereus at $55^{\circ}C$ was the highest (22.8 min), followed by that for E. coli O157:H7 (18.8 min) and L. monocytogenes (17.6 min). At $60-65^{\circ}C$, the order was L. monocytogenes ($D_{60-65^{\circ}C}=3.4-0.9min$), E. coli O157:H7 (3.0-0.3 min), and B. cereus (1.2-0.3 min). The z values for these species were 5.2, 5.5, and $7.7^{\circ}C$, respectively. The Korean national standard for retort food products was achieved by thermal processing at $124{\pm}2^{\circ}C$ for 0.3-2.2 min. This study provides useful data for ensuring both the microbiological safety and product quality of multi-grain soymilk products.

Effects of High Pressure Treatment on the Microbiological and Chemical Properties of Milk (초고압 처리가 우유의 미생물학적 및 이화학적 특성에 미치는 영향)

  • Lee, Jieun;Choi, Eun-Ji;Park, Sun Young;Jeon, Ga Young;Jang, Ja-Young;Oh, Young Jun;Lim, Seul Ki;Kim, Tae-Woon;Lee, Jong-Hee;Park, Hae Woong;Kim, Hyun Ju;Jeon, Jung Tae;Choi, Hak-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.267-274
    • /
    • 2014
  • High pressure processing (HPP) is a non-thermal method used to prevent bacterial growth in the food industry. Currently, pasteurization is the most common method in use for most milk processing, but this has the disadvantage that it leads to changes in the milk's nutritional and chemical properties. Therefore, the effects of HPP treatment on the microbiological and chemical properties of milk were investigated in this study. With the treatment of HPP at 600 MPa and $15^{\circ}C$ for 3 min, the quantity of microorganisms and lactic acid bacteria were reduced to the level of 2-3 log CFU/ml, and coliforms were not detected during a storage period of 15 d at $4^{\circ}C$. An analysis of milk proteins, such as ${\alpha}$-casein, ${\beta}$-casein, ${\kappa}$-casein, ${\alpha}$-lactalbumin, ${\beta}$-lactoglobulin by on-chip electorophoresis revealed that the electrophoretic pattern of the proteins from HPP-treated milk was different from that of conventionally treated commercial milk. While the quantities of vitamins and minerals in HPP-treated milk were seen to be comparable to amounts found in raw milk, the enzyme activity of lipase, protease and alkaline phosphatase after HPP treatment was reduced. These results suggest that HPP treatment is a viable method for the control of undesirable microorganisms in milk, allowing for minimal nutritional and chemical changes in the milk during the process.

Effect of Thermal Processing of Cereal Grain on the Performance of Crossbred Calves Fed Starters Containing Protein Sources of Varying Ruminal Degradability

  • Pattanaik, A.K.;Sastry, V.R.B.;Katiyar, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.9
    • /
    • pp.1239-1244
    • /
    • 2000
  • In order to investigate the effect of incorporation of thermally processed cereal (maize) grain and differently degradable protein sources in the calf starter, twenty four newly born crossbred $(Bos\;taurus{\times}Bos\;indicus)$ calves were assigned at random to six diets in a $3{\times}2$ factorial design involving three protein sources viz. groundnut meal (GN), cottonseed meal (CS) and meat and bone meal (MB), each along with two differently processed grain, namely ground raw (R) and pressure cooked (P) maize. The corresponding calf starters with green oats (Avena sativa) were given free-choice from 14 d onwards till the end of the 90 d experimental feeding. A restricted milk diet was fed till the age of weaning at 60 d. Total DM intake was not affected by cereal or protein sources. However, daily intake of DM (59.23 vs 66.45 g) and CP (12.38 vs 14.10 g) per kg $W^{0.75}$ was reduced (p<0.05) due to cereal processing. Better (p<0.05) feed and protein efficiencies after weaning and during entire period in calves fed processed maize resulted in a trend of higher $(p{\leq}092)$ growth rate especially when GN was the source of protein. In comparison among protein sources, calves fed MB diets tended to grow faster $(p{\leq}098)$ concurrent with a higher CP intake before weaning. It is thus evident that thermal processing of maize in the calf starter seems to improve calf performance. Moreover, results indicated that feeding of protein and starch sources of matching ruminal degradability may prove beneficial for early growth of crossbred calves.

Studies on Thermophilic Flat-sour Bacteria in Soymilk: Isolation, Indentification and Determination of Heat Resistance (두유내의 고온성 Flat-sour 변질균의 분리.동정 및 열저항성에 관한 연구)

  • Chung, Je-Bong;Lee, Kyun-Hee;Sohn, Heon-Soo;Kim, Suk-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.218-224
    • /
    • 1988
  • For the optimization of thermal processing conditions in soymilk process, 4 strains of thermoresistant flat-sour bacteria were isolated from soymilk. The isolates were aerobic spore-forming rods, and grew at $-65^{\circ}C$. Based on the morphological and physiological properties, all of the isolated strains were identified as Bacillus stearothermophilus. The heat resistance of spores of 3 isolates and Bacillus stearothermophillus ATCC 12980 as a reference was determined in soymilk(pH 7.0) and pH 7.0 buffer solution. For each of the spores studied, linear regression equations with standard error were presented for the thermal destruction at 110, 115, 121, and $125^{\circ}C$. It was not obvious that the components of soy milk increased the heat resistance of spores. Between the strains studied, variability was noted in the D values at the different temperature, and no one strain was consistently the most heat resistant at all the given temperatures. The average D value for the 4 strains was 77.27, 20.20, 2.76 and 1.39 min at 110, 115, 121 and $125^{\circ}C$, respectively, and the average z value was $8.36^{\circ}C$.

  • PDF