• Title/Summary/Keyword: thermal infrared (TIR)

Search Result 23, Processing Time 0.022 seconds

Rock Type Classification by Multi-band TIR of ASTER

  • Watanabe, Hiroshi;Matsuo, Kazuaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1445-1456
    • /
    • 2003
  • The ASTER TIR (thermal infrared radiometer) sensor has 5 spectral bands over 8 to 12 ${\mu}$m region. Rock type classification using the ASTER TIR nighttime data was performed in the Erta Ale range of the Ethiopian Rift Valley. Erta Ale range is the most important axial volcanic chain of the Afar region. The petrographic diversity of lava erupted in this area is very important, ranging from magnesian transitional basalt to rhyolites. We tried to classify the rock types based on the spectral behavior of each volcanic rock types in thermal infrared range and estimated SiO$_{2}$ content with emission data by the ASTER TIR.

  • PDF

Accuracy Assessment of Sharpening Algorithms of Thermal Infrared Image Based on UAV (UAV 기반 TIR 영상의 융합 기법 정확도 평가)

  • Park, Sang Wook;Choi, Seok Keun;Choi, Jae Wan;Lee, Seung Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Thermal infrared images have the characteristic of being able to detect objects that can not be seen with the naked eye and have the advantage of easily obtaining information of inaccessible areas. However, TIR (Thermal InfraRed) images have a relatively low spatial resolution. In this study, the applicability of the pansharpening algorithm used for satellite imagery on images acquired by the UAV (Unmanned Aerial Vehicle) was tested. RGB image have higher spatial resolution than TIR images. In this study, pansharpening algorithm was applied to TIR image to create the images which have similar spatial resolution as RGB images and have temperature information in it. Experimental results show that the pansharpening algorithm using the PC1 band and the average of RGB band shows better results for the quantitative evaluation than the other bands, and it has been confirmed that pansharpening results by ATWT (${\grave{A}}$ Trous Wavelet Transform) exhibit superior spectral resolution and spatial resolution than those by HPF (High-Pass Filter) and SFIM (Smoothing Filter-based Intensity Modulation) pansharpening algorithm.

Effectiveness of Using the TIR Band in Landsat 8 Image Classification

  • Lee, Mi Hee;Lee, Soo Bong;Kim, Yongmin;Sa, Jiwon;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.203-209
    • /
    • 2015
  • This paper discusses the effectiveness of using Landsat 8 TIR (Thermal Infrared) band images to improve the accuracy of landuse/landcover classification of urban areas. According to classification results for the study area using diverse band combinations, the classification accuracy using an image fusion process in which the TIR band is added to the visible and near infrared band was improved by 4.0%, compared to that using a band combination that does not consider the TIR band. For urban area landuse/landcover classification in particular, the producer’s accuracy and user’s accuracy values were improved by 10.2% and 3.8%, respectively. When MLC (Maximum Likelihood Classification), which is commonly applied to remote sensing images, was used, the TIR band images helped obtain a higher discriminant analysis in landuse/landcover classification.

3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images (드론 열적외선 영상을 이용한 3차원 열공간 모델링)

  • Shin, Young Ha;Sohn, Kyung Wahn;Lim, SooBong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • Systematic and continuous monitoring and management of the energy consumption of buildings are important for estimating building energy efficiency, and ultimately aim to cope with climate change and establish effective policies for environment, and energy supply and demand policies. Globally, buildings consume 36% of total energy and account for 39% of carbon dioxide emissions. The purpose of this study is to generate three-dimensional thermo-spatial building models with photogrammetric technique using drone TIR (Thermal Infrared) images to measure the temperature emitted from a building, that is essential for the building energy rating system. The aerial triangulation was performed with both optical and TIR images taken from the sensor mounted on the drone, and the accuracy of the models was analyzed. In addition, the thermo-spatial models of temperature distribution of the buildings in three-dimension were visualized. Although shape of the objects 3D building modeling is relatively inaccurate as the spatial and radiometric resolution of the TIR images are lower than that of optical images, TIR imagery could be used effectively to measure the thermal energy of the buildings based on spatial information. This paper could be meaningful to present extension of photogrammetry to various application. The energy consumption could be quantitatively estimated using the temperature emitted from the individual buildings that eventually would be uses as essential information for building energy efficiency rating system.

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.

Using ASTER TIR imagery to identify Heat Islands: A case study of New Jersey (ASTER 열적외선 이미지를 이용한 열섬 현상 탐지: 뉴저지를 사례로)

  • Park, Gwang yong;David W. Gwynn;David A. Robinson
    • Proceedings of the KGS Conference
    • /
    • 2004.05a
    • /
    • pp.56-56
    • /
    • 2004
  • The ability to detect urban heat islands in satellite imagery is a function of spatial, spectral, and temporal resolutions. Imagery from the satellite-mounted Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor acquired since December 1999 allows us to view the Earth at a higher spectral resolution in the thermal infrared (TIR) portion of the electromagnetic spectrum than most other satellite systems (e.g., AVHRR, Landsat TM). (omitted)

  • PDF

Method of Integrating Landsat-5 and Landsat-7 Data to Retrieve Sea Surface Temperature in Coastal Waters on the Basis of Local Empirical Algorithm

  • Xing, Qianguo;Chen, Chu-Qun;Shi, Ping
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • A useful radiance-converting method was developed to convert the Landsat-7 ETM+thermal-infrared (TIR) band's radiance ($L_{{\lambda},L7/ETM+}$) to that of Landsat-5 TM TIR ($L_{{\lambda},L5/TM+})$ as: $L_{{\lambda},L5/TM}=0.9699{\times}L_{{\lambda},L7/ETM+}+0.1074\;(R^2=1)$. In addition, based on the radiance-converting equation and the linear relation between digital number (DN) and at-satellite radiance, a DN-converting equation can be established to convert DN value of the TIR band between Landsat-5 and Landsat-7. Via this method, it is easy to integrate Landsat-5 and Landsat-7 TIR data to retrieve the sea surface temperature (SST) in coastal waters on the basis of local empirical algorithms in which the radiance or DN of Lansat-5 and 7 TIR band is usually the only input independent variable. The method was employed in a local empirical algorithm in Daya Bay, China, to detect the thermal pollution of cooling water discharge from the Daya Bay nuclear power station (DNPS). This work demonstrates that radiance conversion is an effective approach to integration of Landsat-5 and Landsat-7 data in the process of a SST retrieval which is based on local empirical algorithms.

The Application of ASTER TIR Satellite Imagery Data for Surface Temperature Change Analysis -A Case Study of Cheonggye Stream Restoration Project- (도시복원사업의 열 환경 변화 분석을 위한 ASTER 열적외 위성영상자료의 활용 -청계천 복원사업을 사례로-)

  • Jo, Myung-Hee;Jo, Yun-Won;Kim, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.73-80
    • /
    • 2009
  • Recently in order to mange better life quality much effort was spent for environmental-friendly urban development project and environmental restoration project. During these projects, there should be deep understanding about atmospheric environment change analysis and long term monitoring so that it would be helpful for better environment promotion such as heat island mitigation effect and wind way construction. In this study, the surface temperature environment change between before and after Cheonggye Stream Restoration Project was mapped and analyzed by using ASTER(Advanced Spaceborne Thermal Emission Reflection Radiometer) TIR(Thermal Infrared) satellite imagery and finally the fact, that the heat island effect was mitigated, was clarified. For this study, the correlation analysis was conducted through comparing the difference between atmosphere temperature of AWS(Automatic Weather System) and surface temperature of ASTER. Furthermore, this study will be the infrastructure of urban meteorology model development by understanding surface temperature pattern change and executing quantitative analysis of heat island.

  • PDF

Estimating Sea Surface Temperature Change after Tide Embankment Construction using Landsat Data (방조제 건설에 의한 해수면 온도 변화 추정)

  • Shin, Dong-Hoon;Lee, Kyoo-Seock
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.224-232
    • /
    • 2006
  • This study investigates to detect Sea Surface Temperature (SST) and land cover change after tide embankment construction using Landsat Thematic Mapper (TM) Thermal Infrared (TIR) band data at Shihwa Lake and surrounding area. SST measurement is important for studies of both the structure of the ocean and as the thermal boundary between the ocean and the atmosphere. Since 1970s, the derivation of SST by satellite remote sensing (RS) has been applied to earth surface using Advanced Very High Resolution Radiometer (AVHRR) and Landsat TM. However, AVHRR has restriction in deriving SST in the area whose shoreline is complicated like western coast in South Korea because of coarse spatial resolution. The TIR band of TM images can be used to detect SST change whose shoreline is complicated and narrow like the study site. Thus, multi-temporal TM images were used for SST change detection in this study.

  • PDF

Estimation of Sea Surface Temperature Change by Tide Embankment Construction

  • Shin Dong-hoon;Lee Kyoo-seock
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.146-148
    • /
    • 2005
  • This study investigates to detect sea surface temperature (SST) and land cover change after tide embankment construction using Landsat Thematic Mapper (TM) thermal infrared (TIR) band data at Shihwa Lake and surrounding area. SST measurement is important for studies of both the structure of the ocean and as the thermal boundary between the ocean and the atmosphere. The TIR band of TM images can be used to detect SST change whose shoreline is complicated and narrow like the study site. The purpose of this study is to estimate SST and land cover change at Shihwa Lake and surrounding area.

  • PDF