• Title/Summary/Keyword: thermal impact

Search Result 824, Processing Time 0.034 seconds

Performance Evaluation of Four Different Land Surface Models in WRF

  • Lee, Chong Bum;Kim, Jea-Chul;Belorid, Miloslav;Zhao, Peng
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • This study presents a performance evaluation of four different land surface models (LSM) available in Weather Forecast Research (WRF). The research site was located in Haean Basin in South Korea. The basin is very unique by its geomorphology and topography. For a better representation of the complex terrain in the mesoscale model were used a high resolution topography data with a spatial resolution of 30 meters. Additionally, land-use layer was corrected by ground mapping data-sets. The observation equipments used in the study were an ultrasonic anemometer with a gas analyzer, an automatic weather station and a tethered balloon sonde. The model simulation covers a four-day period during autumn. The result shows significant impact of LSM on meteorological simulation. The best agreement between observation and simulation was found in the case of WRF with Noah LSM (WRF-Noah). The WRF with Rapid Update Cycle LSM (WRF-RUC) has a very good agreement with temperature profiles due to successfully predicted fog which appeared during measurements and affected the radiation budget at the basin floor. The WRF with Pleim and Xiu LSM (WRF-PX) and WRF with Thermal Diffusion LSM (WRF-TD) performed insufficiently for simulation of heat fluxes. Both overestimated the sensible and underestimated the latent heat fluxes during the daytime.

Cell morphology of microcellular foaming injection molding products with pressure drop rate (초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화)

  • 김학빈;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine (디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.

Experimental Investigations on the Temperature Characteristics of Oscillating Heat Pipe with Various Filling Ratio

  • Jeong, Hyo-Min;Chung, Han-Shik;Lee, Kwang-Sung;Tanshen, Md.Riyad;Lee, Tae-Jin;Lee, Sin-Il
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.47-53
    • /
    • 2013
  • The article focuses on the Temperature characteristics inside single loop oscillating heat pipe (OHPs). In this paper, heat pipe is experimentally studied thereby providing vital information on the parameter dependency of their thermal performance. The impact depiction has been done for the variation of tube model of the device. OHPs are made of copper capillary tubes of outer diameter 6.25 mm, inner diameter 4 mm heated by constant temperature water bath cooled by ambient temperature. Using four types of OHPs of copper capillary tubes length of 1500mm and HP length 650mm inside tubes working fluid is R-22 Pressure 8 bar and mass 34g,32g,28g,16g. The results indicate a strong influence of filling ratio on the performance.

Properties of $SiO_2$ film oxidized in $N_2O$ gas ($N_2O$ 가스에서 열산화한 $SiO_2$ 막의 특성)

  • Kim, Dong-Seok;Choi, Hyun-Sik;Seo, Yong-Jin;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.829-831
    • /
    • 1992
  • Ultrathin metal-oxide-semiconductor(MOS) gate dielectrics have been fabricated by conventional thermal oxidation in $N_2O$ ambient. Compared to oxides grown in $O_2$, $N_2O$ oxides exhibit significantly low flatband voltage and small shift in flatband voltage. $N_2O$ oxidation induces a slight decrease in mobile ionic charge density($N_m$), fixed charge density($N_f$) and surface state charge density($N_{ss}$). This study establishes that $N_2O$ oxides may have a great impact on future MOS ULSI technology in which ultrathin gate dielectrics are required.

  • PDF

Numerical Study on the Effect of Volume Change of Light-Off Catalyst on Light-Off Performance (저온활성촉매변환기의 체적변화가 활성화 성능에 미치는 영향에 관한 수치적 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.87-100
    • /
    • 2000
  • HC and CO emissions during the cold start contribute the majority of the total emissions in the legislated driving cycles. Therefore, in order to minimize the cold-start emissions, the fast light-off techniques have been developed and presented in the literature. One of the most encouraging strategies for reducing start-up emissions is to place the light-off catalyst, in addition to the main under-body catalyst, near the engine exhaust manifold. This study numerically consider three-dimensional, unsteady compressible reacting flow in the light-off and under body catalyst to examine the impact of a light-off catalyst on thermal response of the under body catalyst and tail pipe emission. The effect of flow distribution on the temperature distribution and emission performance have also been examined. The present results show that flow distribution has a great influence on the temperature distribution in the monolith at the early stage of warm-up process and the ultimate conversion efficiency of light-off catalyst is severly deteriorated when the space velocity is above $100,000hr^{-1}$.

  • PDF

Mixing Zone Analysis on Outfall Plume considering Influent Temperature Variation (수온 변화의 영향을 고려한 방류관 플룸의 혼합역 분석)

  • 김지연;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.247-253
    • /
    • 2004
  • As a large scale port development in coastal waters proceeds step by step and populations in the vicinity of port are getting increased, the issue on "how to dispose the treated municipal water and wastewater in harbor" brings peoples′ concern. The submarine outfall system discharges the primary or secondary treated effluent at the coastline or in deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding sea water and becomes very dilute. We intended in this paper to investigate the impact on dilution of effluent and the behavior of flume under the conditions of the seasonal and spatial temperature variations, which have not been noticeable in designing effective marine outfall system. To predict and analyze the behaviour and dilution characteristics of plume not just with the effluent temperature, but also with the seasonal variation of temperature of surround water and tidal changes, CORMIX(Cornell Mixing Zone Expert System)-GI have been applied. The results should be used with caution in evaluation the mixing zone characteristics of discharged water. We hope to help for the effective operation of outfall system, probable outfall design, protection of water quality, and warm water discharges from a power plant, etc.

  • PDF

Advanced Field Weakening Control for Maximum Output Power Operation of Induction Motor in a Limited Environment

  • Seo, Yong-Joo;Go, Hee-Young;Kim, Jang-Mok
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.217-218
    • /
    • 2012
  • A load motor used for warship or submarine is with limited volume and weight, also specific environmental tests like impact, vibration, noise, temperature and EMC/EMI have to be satisfied. Induction motors, synchronous motors, BLDC motor and etc, are used depending on the purpose of using military equipment. Induction Motors are used for a number of military equipment more commonly due to the robust structure and simple maintenance. Domestic and foreign warships have a wide range of voltages as the DC voltage sources with battery are mainly used for them. The ${\Delta}-connection$ operation of the induction motor is required to make the maximum power in a low voltage level. But the elements' temperature of the inverter increases due to high input current when it is in the ${\Delta}-connection$ operation. Therefore, the induction motor must be driven with the Y-connection. The lack of voltage needs to be with the field weakening control. This paper suggests the optimum field weakening control algorithm to drive the induction motor with maximum power in a limited thermal and DC voltage condition.

  • PDF

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

Effect of weld thermal cycle on the HAZ toughness and microstructure of a Ti-oxide bearing steel (Ti산화물강의 HAZ인성 및 미세조직에 미치는 용접열 cycle의 영향)

  • 정홍철;한재광;방국수
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • HAZ impact toughness of Ti-oxide steel was investigated and compared to that of a conventional Ti-nitride steel. Toughness variations of each steel with weld peak temperatures and cooling rates were interpreted with microstructural transformation characteristics. In contrast to Ti-nitride steel showing continuous decrease in HAZ toughness with peak temperature, Ti-oxide steel showed increase in HAZ toughness above $1400^{\circ}C$ peak temperature. The HAZ microstructure of the Ti-oxide steel is characterized by the formation of intragranular ferrite plate, which was found to start from Ti-oxide particles dispersed in the matrix of the steel. Large austenite grain size above $1400^{\circ}C$ promoted intragranular ferrite plate formation in Ti-oxide steel while little intragranular ferrite plate was formed in Ti-nitride steel because of dissolution of Ti-nitrides. Ti-oxides in the Ti-oxide steel usually contain MnS and have crystal structures of TiO and/or $Ti_2O_3$.

  • PDF