• Title/Summary/Keyword: thermal impact

Search Result 824, Processing Time 0.029 seconds

NO Removal Characteristics in $N_2$ for a Dielectric Barrier Discharge Reactor with the Variation of a Discharge Gap (유전체 장벽 방전 반응기에서 방전 간극의 변화에 따른 질소 분위기하의 NO 제거 특성)

  • 차민석;이재옥;신완호;송영훈;김석준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.407-408
    • /
    • 2000
  • 유전체 장벽 방전 반응기 (Dielectric Barrier Discharge (DBD) Reactor)를 이용한 비열 플라즈마(Non-thermal plasma) 공정에서 NO 제거 특성을 실험적으로 연구하였다. 질소 분위기에서 전자에 의한 NO 의 제거는 $N_2$ + e $\longrightarrow$ N + N + e 반응에 의한 질소의 전자충돌해리 (electron-impact dissociation)와 이 반응에 의하여 생성된 질소원자에 의한 NO 의 환원반응 N + NO $\longrightarrow$ $N_2$ + O 으로 설명될 수 있으며, 이로 인하여 $O_2$$H_2O$ 의 첨가에 따른 부산물(O, $O_3$, OH 등)에 의한 산화반응이 주로 일어나는 경우 (XO + NO $\longrightarrow$ X + NO$_2$) 와는 달리 NO 제거에 소모된 에너지를 평가하기에 용이한 장점이 있다(Penetrante et al., 1995). (중략)

  • PDF

A Study on the Analysis of Tool-wear Patterns and Mechanisms in Face Milling (정면밀링에서 공구마멸 패턴과 메커니즘 분석에 관한 연구)

  • Jang, Sung-Min;Baek, Seung-Yub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.24-29
    • /
    • 2017
  • This paper provides an experimental analysis on the breakage of the coated tool using the face-milling cutter of the machining center due to changes in the cutting speed and the feed rate. The experimental studies were conducted using STS 304 materials and the damage to the tool was analyzed according to the change in machining time. The experiments confirmed that the cutting speed and feed rate affected the tool damage and the mechanical impact and thermal shock were determined to severely damage the tool. From the production engineering point of view, it has been experimentally investigated that the increased feed rate significantly influences the material removal rate more than the increased cutting speed.

A Study on Initial Strength of Sn-Pb Solder Joint (Sn-Pb 솔더 접합부의 초기 강도에 관한 연구)

  • 신영의;정승부
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.86-92
    • /
    • 1996
  • This paper presents the investigations on the initial strength and its variation of Sn-Pb solder joint using different lead frames, such as are 42 alloy lead and Cu alloy lead. As the result of the lack of initial strength at solder joints, whose pitch is from 0.3 to 0.4mm, short circuit often occured at the solder joint by thermal shock or external impact. Therefore, in this paper investigations were performed on the initial strength and its variation of Sn-Pb solder joint as well as fractured mode with using different lead frames.

  • PDF

Micro Hole Machining for Ceramics ($Al_2O_3$) Using Ultrasonic Vibration (초음파 진동을 이용한 세라믹 소재의 마이크로 홀 가공)

  • 박성준;이봉구;최헌종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.104-111
    • /
    • 2004
  • Ultrasonic machining is a non-thermal, non-chemical, md non-electorial material removal process, and thus results in minimum modifications in mechanical properties of the brittle material during the process. Also, ultrasonic machining is a non-contact process that utilize ultrasonic vibration to impact a brittle material. In this research characteristics of micro-hole machining for brittle materials by ultrasonic machining(USM) process have been investigated. And the effect of ultrasonic vibration on the machining conditions is analyzed when machining fir non-conductive brittle materials using tungsten carbide tools with a view to improve form and machining accuracy.

Measurement Uncertainty for Analysis of Residual Carbon in a Tungsten-15% Copper MIM part (텅스텐-15% 카파 사출성형체의 잔류 탄소량 분석에 대한 측정 불확도)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.410-414
    • /
    • 2007
  • Carbon contamination from the binder resin is an inherent problem with the metal powder injection molding process. Residual carbon in the W-Cu compacts has a strong impact on the thermal and electric properties. In this study, uncertainty was quantified to evaluate determination of carbon in a W-15%Cu MIM body by the combustition method. For a valid generalization about this evaluation, uncertainty scheme applied even to the repeatability as well as the uncertainty sources of each analyse step and quality appraisal sources. As a result, the concentration of carbon in the W-Cu part were measured as 0.062% with expanded uncertainty of 0.003% at 95% level. This evaluation example may be useful to uncertainty evaluation for other MIM products.

Lead-free Solder Alloys (무연솔더합금)

  • 이호영
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.4
    • /
    • pp.218-231
    • /
    • 2002
  • As the environmental regulation worldwide emerges, most notably in Europe and Japan, the elimination of Pb usage in electronic assemblies has been an important issue for microelectronics assembly due to the inherent toxicity of Pb. This has provided an impetus towards the development of Pb-free solders. A major factor affecting alloy selection is the melting point, since this will have a major impact on the other polymeric materials used in microelectronic assembly and encapsulation. Other important manufacturing issues are cost, availability, and wetting characteristics. Reliability related properties include mechanical strength, fatigue resistance, coefficient of thermal expansion and reactivity with substrate. In this article, Pb-free solder alloys have been proposed so far have been reviewed and are summarized.

Numerical predictions of the time-dependent temperature field for the 7th Cardington compartment fire test

  • Lopes, Antonio M.G.;Vaz, Gilberto C.;Santiago, Aldina
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.421-441
    • /
    • 2005
  • The present work reports on a numerical simulation of a compartment fire. The fire was modeled using a simplified approach, where combustion is simulated as a volumetric heat release. Computations were performed with the commercial code CFX 5.6. Radiation was modeled with a differential approximation (P1 model), while turbulence effects upon the mean gas flow were dealt with a SST turbulence model. Simulations were carried out using a transient approach, starting at the onset of ignition. Results are provided for the temperature field time evolution, thus allowing a direct comparison with the analytical and experimental data. The high spatial resolution available for the results proved to be of great utility for a more detailed analysis of the thermal impact on the steel structure.

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.

Chemically Modified Superhydrophobic Zinc Oxide nanoparticle surface

  • Lee, Mi-Gyeong;Gwak, Geun-Jae;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.448-448
    • /
    • 2011
  • We investigated the fabrication method of superhydrophobic nanocoating prepared by a simple spin-coating and the chemisorption of fatty acid. The resulting coating showed a tremendous water repellency (static water contact angle = $154^{\circ}$) and the water contact angle can be modulated by changing the number of deposition cycles of ZnO and the carbon length of Self-Assembled Monolayers (SAM). Varying the number of deposition cycles of ZnO controlled the surface roughness, and affected to the superhydrophobicity. This simple coating method can be universally applicable to any substrates including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below $250^{\circ}C$ and under dynamic conditions.

  • PDF

Analysis of the Rolling Contact Fatigue for Work Roll in Finishing Mill of Hot Strip Rolling (열간 연속판재 압연기의 작업롤 전동피로해석)

  • 배원병;박해두;송길호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.292-300
    • /
    • 1995
  • According to the number of cold-rolled coils, the amount of roll wear and thermal expansion, and roll gap profile were calculated, by using the actual data from the finishing mill. Also, based on those data, the calculations of the deflection, the flattening, and the contact pressure of vwork rolls and backup rolls were made respectively. Specially, in the calculation of contact pressure, the numerical results were obtained not only during the normal rolling, but also during the abnormal rolling, by modeling mathematically the dynamic impact force which occurs when the head section of the strip is threading through rolls. With those results the growth of the fatigue region and the fatigue damage of rolls were predicted. Also the optimum roll-grinding depth was determined to maximize the roll life.