• Title/Summary/Keyword: thermal impact

Search Result 824, Processing Time 0.028 seconds

Studies on Rheological Properties of High Solids Coating Colors (I) - Effect of Rheology Modifiers on Viscoelastic Properties -

  • Yoo, Sung-Jong;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.39-45
    • /
    • 2012
  • For a fundamental study for high concentration pigment coating, the effects of alkali swellable emulsion (ASE) type rheology modifier and surface adsorption emulsion (SAE) type rheology modifier on both the stability and the viscoelastic behavior of a coating color were elucidated. The coating color prepared with SAE type rheology modifier showed superior thermal and mechanical stability than that with ASE type. In the high concentration and high speed coating process, the mechanical stability of a coating color was a key parameter since both impact force and shear force were increased with the increase of coating color concentration and coating speed, respectively.

TRANSFORMATION OF DIMENSIONLESS HEAT DIFFUSION EQUATION FOR THE SOLUTION OF DYNAMIC DOMAIN IN PHASE CHANGE PROBLEMS

  • Ashraf, Muhammad;Avila, R.;Raza, S. S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.31-40
    • /
    • 2009
  • In the present work transformation of dimensionless heat diffusion equation for the solution of moving boundary problems have been formulated. The formulation is based on 1-D, 2-D and 3-D, unsteady heat diffusion equations. These equations are rst turned int dimensionless form by using dimensionless quantities and their transformation was formulated in liquid and solid phases. The salient feature of this work is that during the transformation of dimensionless heat diffusion equation there arises a convective term $\tilde{v}$ which is responsible for the motion of interface in liquid as well as solid phase. In the transformed heat equation, a correction factor $\beta$ also arises naturally which gives the correct transformed flux at interface.

  • PDF

PROPAGATION OF NUCLEAR DATA UNCERTAINTIES FOR PWR CORE ANALYSIS

  • Cabellos, O.;Castro, E.;Ahnert, C.;Holgado, C.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.299-312
    • /
    • 2014
  • An uncertainty propagation methodology based on the Monte Carlo method is applied to PWR nuclear design analysis to assess the impact of nuclear data uncertainties. The importance of the nuclear data uncertainties for $^{235,238}U$, $^{239}Pu$, and the thermal scattering library for hydrogen in water is analyzed. This uncertainty analysis is compared with the design and acceptance criteria to assure the adequacy of bounding estimates in safety margins.

Pervaporation Separation of Water/Ethanol Mixtures through PBMA/anionic PAA IPN Membrane

  • Jin, Young-Sub;Kim, Sung-Chul
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.86-87
    • /
    • 1996
  • IPN (Interpenetrating Polymer Network) is a mixture of two or more crosslinked polymers with physically interlocked network structures between the component polymers. IPN can be classified as an alloy of thermosets and has the characteristics of thermosets such as the thermal resistance and chemical resistance and also has the characteristics of polymer alloys with enhanced impact resistance and amphoteric properties. The physical interlocking during the synthesis restricts the phase separation of the component polymer with chemical pinning process, thus the control of morphology is possible through variations of the reaction temperature and pressure, catalyst concentration and crosslinking agent concentration. Finely dispersed domain structure can be obtained through IPN synthesis of polymer components with gross immiscibility. In membrane applications, particularly for the separation of liquid mixtures, crosslinked polymer component with specific affinity to the permeate is needed. With the presence of the permeant-inert polymer component, the mechanical strength and the selectivity of the membranes are enhanced by restricting the swelling of the transporting polymer component networks.

  • PDF

Prediction of the Amount of Energy Consumption by Variation in Envelope Insulation on a Detached House in Southern Part of Korea (남부지역 주거건물의 외피단열변화에 따른 에너지소비량 예측)

  • Moon, Jin-Woo;Han, Seung-Hoon;Oh, Sai-Gyu
    • Journal of the Korean housing association
    • /
    • v.22 no.1
    • /
    • pp.115-122
    • /
    • 2011
  • This study aimed at quantifying the impact of envelope insulation on energy consumption for thermal controls in residential buildings in southern part of Korea. A series of parametric simulations for a range of R-values of walls, roof, floor, and windows were computationally conducted for a prototypical Korean detached house. Analysis revealed that the total amount of heat gain was larger than that of heat loss, while the amount of energy for cooling was smaller than that for heating due to the difference of system efficiency; the envelope heat transfer was more significant for the heat loss, thus, the increase of the envelope insulation was more effective to reduce heating load; and there were certain levels of envelope insulation after which the energy saving effect was not significant. These findings are expected to be a fundamental database for the decision of proper insulation level in Korean residential buildings.

Impact of gate protection silicon nitride film on the sub-quarter micron transistor performances in dynamic random access memory devices

  • Choy, J.-H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.47-49
    • /
    • 2004
  • Gate protection $SiN_x$ as an alternative to a conventional re-oxidation process in Dynamic Random Access Memory devices is investigated. This process can not only protect the gate electrode tungsten against oxidation, but also save the thermal budget due to the re-oxidation. The protection $SiN_x$ process is applied to the poly-Si gate, and its device performance is measured and compared with the re-oxidation processed poly-Si gate. The results on the gate dielectric integrity show that etch damage-curing capability of protection $SiN_x$ is comparable to the re-oxidation process. In addition, the hot carrier immunity of the $SiN_x$ deposited gate is superior to that of re-oxidation processed gate.

The Effect of Phytofiltration System on the Improvement of Indoor Air Quality (식물을 이용한 실내공기환경 정화효과에 관한 연구)

  • Song, Jeong-Eun;Pang, Seung-Ki;Kim, Yong-Sik;Sohn, Jang-Yeul
    • KIEAE Journal
    • /
    • v.5 no.4
    • /
    • pp.3-8
    • /
    • 2005
  • The objective of this study is to examine the impact of the Phytofiltration system on the improvement of indoor air quality. Measurement was performed in a full-scale mock up model to examine the purification efficiency of air by plants. Seven species of plants, which were recommended by NASA, were used in measurements. Two species of plants that showed outstanding purifying effects were chosen for further measurements. The measurements were performed according to the positions and amounts of plants. Thermal environment, the concentration of Toluene and Formaldehyde were monitored. Ficus Benjamiana and Aglaonema brevispathum were excellent in diluting the concentration of contaminants. The effect of diluting concentration became better as the amount of plants increased. The reducing effect was the best when the plants were placed near window.

Fabrication of Bi2212 superconductor by Centrifugal Forming Process (원심 성형법에 의한 고온초전도체 제조)

  • 정승호;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.503-506
    • /
    • 2002
  • BSCCO 2212 HTS was fabricated by CFP(centrifugal forming process). The powder was initially ground in the mixing ratio of 2:2::1:2 with 10% of SrSO$_4$. The temperature increased up to 1035$^{\circ}C$ and 1200$^{\circ}C$ for melting. The melt was poured into the preheated and rotating copper mould from 200 to 600$^{\circ}C$. The specimen was not broken by thermal impact when the melting temperature was over 1050$^{\circ}C$ and copper mould was preheated over 400$^{\circ}C$ for 30min. A tube type of specimen was annealed at 840$^{\circ}C$ or 860$^{\circ}C$ in oxygen atmosphere for 24hours. Typical microstructure was analyzed in terms of CFP parameters by XRD, SEM, and EDS and also superconducting characteristics were compared.

  • PDF

Impact of Passivation and Reliability for Base-exposed InGaP/GaAs HBTs

  • Park, Jae-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.115-120
    • /
    • 2007
  • Reliability between passivated and unpassivated process with the base-exposed InGaP/GaAs HBTs was studied. A passivation of HBT was attempted by $SiO_2$ thin film deposition at $300^{\circ}C$ by means of PECVD. Base-exposed InGaP/GaAs HBTs before and after passivation were investigated and compared in terms of DC and RF performance. Over a total period of 30 days, passivated HBTs show only 2% degradation of DC current gain for the high current density of $40KA/cm^2$. The measured thermal resistance of $2{\times}30{\mu}m^2$ single emitter InGaP/GaAs HBT passivated with PECVD $SiO_2$ devices can be extracted and was founded to be 1430 K/W. The estimated MTTF was $2{\times}10^7hr\;at\;T_j=125^{\circ}C$ with an activation energy $(E_a)$ of 1.37 eV.

Metal work function dependent photoresponse of schottky barrier metal-oxide-field effect transistors(SB MOSFETs) (금속(Al, Cr, Ni)의 일함수를 고려한 쇼트키 장벽 트랜지스터의 전기-광학적 특성)

  • Jung, Ji-Chul;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.355-355
    • /
    • 2010
  • We studied the dependence of the performance of schottky barrier metal-oxide-field effect transistors(SB MOSFETs) on the work function of source/drain metals. A strong impact of the various work functions and the light wavelengths on the transistor characteristics is found and explained using experimental data. We used an insulator of a high thickness (100nm) and back gate issues in SOI substrate, subthreshold swing was measured to 300~400[mV/dec] comparing with a ideal subthreshold swing of 60[mV/dec]. Excellent characteristics of Al/Si was demonstrated higher on/off current ratios of ${\sim}10^7$ than others. In addition, extensive photoresponse analysis has been performed using halogen and deuterium light sources(200<$\lambda$<2000nm).

  • PDF