• Title/Summary/Keyword: thermal grease

Search Result 24, Processing Time 0.023 seconds

Development of the High Performance Thermoelectric Modules for High Temperature Heat Sources

  • Jinushi, Takahiro;Okahara, Masahiro;Ishijima, Zenzo;Shikata, Hideo;Kambe, Mitsuru
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.79-80
    • /
    • 2006
  • From a viewpoint of heat stress at high temperatures and contact thermal resistance, it is confirmed that the optimal structure is the skeleton structure using Cu substrate on the cooling side, which has excellent heat conductivity and the optimal installation method is to adopt a carbon sheet and a mica sheet to the high temperature side, where Si grease is applied to the low temperature side, under pressurized condition. The power of the developed modules indicated 0.5W in an $FeSi_2$ module and 3.8 W with a SiGe module at 823K, respectively.

  • PDF

Material Integrity Assessment for a Ni Electrodeposit inside a Tube

  • Kim, Dong-Jin;Kim, Myong Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.233-238
    • /
    • 2007
  • Due to the occasional occurrence of a localizedcorrosion such as a SCC and pitting in steam generator tubing(Alloy 600), leading to a significant economical loss, an effective repair technology is needed. For a successful electrodeposition inside a tube, many processes should be developed. Among these processes, an anode to be installed inside a tube, a degreasing condition to remove any dirt and grease, an activation condition for a surface oxide elimination, a strike layer forming condition which needs to be adhered tightly between an electroforming layer and a parent tube and a condition for an electroforming layer should be established. Through a combination of these various process condition parameters, the desired material properties can be acquired. Among these process parameters, various material properties including a mechanical property and its variation along with the height of the electrodeposit inside a tube as well as its thermal stability and SCC resistance should be assessed for an application in a plant. This work deals with the material properties of the Ni electrodeposits formed inside a tube by using the anode developed in this study such as the current efficiency, hardness, tensile property, thermal stability and SCC behavior of the electrodeposit in a 40wt% NaOH solution at $315^{\circ}C$. It was found that a variation of the material properties within the entire length of the electrodeposit was quite acceptable and the Ni electrodeposit showed an excellent SCC resistance.

A study on Biodegradability of Vegetable Oil based EP Grease (식물유계 EP그리스의 생분해도 평가에 관한 연구)

  • Nam Kyung-Im;Kim Young-wun;Chung Keunwo;Cho Wonoh;Jeon In-sik;Chung Yong-Mi
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.139-148
    • /
    • 2003
  • In this study, biodegradable base Li-greases were prepared by using Li-soap thickener and vegetable oils such as soybean oil, rapeseed oil, castor oil and synthetic ester. Also, EP-greases were formulated by blending base Li-greases, anti-wear additives, EP additives, anti-oxidants and corrosion inhibitor etc. And EP-greases were characterized by analysing physical properties such as worked penetration, dropping point, 4-ball wear, extreme pressure, thermal properties etc. Biodegradability of base Li-greases and EP-greases were evaluated by CEC-L-33-A-93 method using several inoculums of domestic sewage treatment plant. As the results, biodegradability of vegetable oils were shown at the range of 97.1 to $98.4\%$. And biodegradability of base Li-greases and EP-greases were $86.2\%\;\~\;89.3\%\;and\;83.4\%\;\~\;90.0\%$ which were lower value than those o( vegetable oils due to effect of Li-soap thickener, respectively. Therefore, the EP-greases prepared in this study were easily biodegraded by microorgnism.

  • PDF

Development of Equipment and Process on Dry Ice Blasting (드라이아이스 펠렛 세정 장치 및 공정개발)

  • Park, Jong Soo;Kim, Hotae;Kim, Sun-Geon
    • Clean Technology
    • /
    • v.10 no.3
    • /
    • pp.121-130
    • /
    • 2004
  • Pelletizer of dry ice snow produced by adiabatic expansion of liquid carbon dioxide and their blaster were designed and manufactured. The blaster had a high cleaning power against various contaminants on the surface such as stain, oily dirt, lacquer film and paints with low blasting pressure and low consumption of blasting air. The capacity of hopper for dry ice pellet supply was 12 kg and the mass rate of pellet blasting was controlled in 0 to 1.2 kg/min. The impact of the pellets was independent of standoff distance within a certain limiting distance, and dependent on the impact stress, angle and mass rate of dry ice pellet blasting. On the other hand the cleaning power was influenced by thermal properties and surface roughness of the substrates and decreased in the order of glass, copper, brass, steel and acryl. The power was also affected by hardness and adhesion of the contaminant on the substrate, and decreased in the order of grease, epoxy and paint. The noise was detected during blasting in the range of 85 to 100dBA.

  • PDF