• Title/Summary/Keyword: thermal gradient

Search Result 617, Processing Time 0.029 seconds

Thermal Analysis of a Film Cooling System with Normal Injection Holes Using Experimental Data

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee;Kim, Moon-Young
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • The present study investigated temperature and thermal stress distributions in a film cooling system with normal injection cooling flow. 3D-numerical simulations using the FEM commercial code ANSYS were conducted to calculate distributions of temperature and thermal stresses. In the simulations, the surface boundary conditions used the surface heat transfer coefficients and adiabatic wall temperature which were converted from the Sherwood numbers and impermeable wall effectiveness obtained from previous mass transfer experiments. As a result, the temperature gradients, in contrast to the adiabatic wall temperature, were generated by conduction between the hot and cold regions in the film cooling system. The gradient magnitudes were about 10~20K in the y-axis (spanwise) direction and about 50~60K in the x-axis (streamwise) direction. The high thermal stresses resulting from this temperature distribution appeared in the side regions of holes. These locations were similar to those of thermal cracks in actual gas turbines. Thus, this thermal analysis can apply to a thermal design of film cooling holes to prevent or reduce thermal stresses.

Residual Stress Measurement of Sand Casting by ESPI Device and Thermal Stress Analysis (ESPI 장비를 활용한 사형 주조품의 잔류응력 측정 및 주조 열응력 해석)

  • Kwak, Si-Young;Nam, Jeong-Ho
    • Journal of Korea Foundry Society
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.

A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System (저온 잠열 축열조내의 열유동 특성에 관한 연구)

  • Lee, W.S.;Park, J.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

Analysis on the Thermal Efficiency of Branch Prediction Techniques in 3D Multicore Processors (3차원 구조 멀티코어 프로세서의 분기 예측 기법에 관한 온도 효율성 분석)

  • Ahn, Jin-Woo;Choi, Hong-Jun;Kim, Jong-Myon;Kim, Cheol-Hong
    • The KIPS Transactions:PartA
    • /
    • v.19A no.2
    • /
    • pp.77-84
    • /
    • 2012
  • Speculative execution for improving instruction-level parallelism is widely used in high-performance processors. In the speculative execution technique, the most important factor is the accuracy of branch predictor. Unfortunately, complex branch predictors for improving the accuracy can cause serious thermal problems in 3D multicore processors. Thermal problems have negative impact on the processor performance. This paper analyzes two methods to solve the thermal problems in the branch predictor of 3D multi-core processors. First method is dynamic thermal management which turns off the execution of the branch predictor when the temperature of the branch predictor exceeds the threshold. Second method is thermal-aware branch predictor placement policy by considering each layer's temperature in 3D multi-core processors. According to our evaluation, the branch predictor placement policy shows that average temperature is $87.69^{\circ}C$, and average maximum temperature gradient is $11.17^{\circ}C$. And, dynamic thermal management shows that average temperature is $89.64^{\circ}C$ and average maximum temperature gradient is $17.62^{\circ}C$. Proposed branch predictor placement policy has superior thermal efficiency than the dynamic thermal management. In the perspective of performance, the proposed branch predictor placement policy degrades the performance by 3.61%, while the dynamic thermal management degrades the performance by 27.66%.

Thermal Behavior of Ventilated Disc Brakes Considering Contact Between Disc and Pad (디스크 브레이크와 패드의 접촉을 고려한 벤틸레이티드 디스크 브레이크의 열적거동에 관한 연구)

  • Ma, Jeong-Beom;Lee, Bong-Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.259-265
    • /
    • 2014
  • When the brakes of a vehicle are applied, large amounts of heat are generated on the surfaces of the brake discs owing to friction between the discs and the brake pads. A high temperature gradient on the disc surfaces leads to thermal deformation and severe disc abrasion. Ultimately, the thermal deformation and disc wear give rise to a thermal judder phenomenon, which has a major effect on the stability of the vehicle. To investigate and propose a solution to these problems, thermoelastic instabilities under applied thermal and mechanical loads were analyzed using the commercial finite element package ANSYS by considering the contact surfaces between the discs and pads. Direct-contact three-dimensional finite elements between the discs and pads were applied to investigate the disc friction temperature, thermal deformation, and contact stress so that the thermal judder phenomenon on the surface of the disc could be predicted.

A NEW PRESSURE GRADIENT RECONSTRUCTION METHOD FOR A SEMI-IMPLICIT TWO-PHASE FLOW SCHEME ON UNSTRUCTURED MESHES (비정렬 격자 기반의 물-기체 2상 유동해석기법에서의 압력기울기 재구성 방법)

  • Lee, H.D.;Jeong, J.J.;Cho, H.K.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

An Effects of $CO_2$ Addition on Flame Structure in a Non-premixed Counterflow Flame (비예혼합 대향류 화염에서 $CO_2$ 첨가가 화염 구조에 미치는 영향 연구)

  • Lee, Kee-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.166-173
    • /
    • 2007
  • A numerical study was conducted to have the effect of $CO_2$ addition to fuel on the chemical reaction mechanism with the change of the initial concentration of $CO_2$ and the axial velocity gradient. From this study, it was found that there were two serious effects of $CO_2$ addition on a non-premixed flame ; a diluent effect by the reactive species reduction and chemical effect of the breakdown of $CO_2$ by the third-body collision and thermal dissociation. Especially, the chemical effect was serious at the lower velocity gradient of the axial flow. It was certain that the mole fraction profile of $CO_2$ was deflected and CO was increased with the initial concentration of $CO_2$. It was also ascertained that the breakdown of $CO_2$ would cause the increasing of CO mole fraction at the reaction region. It was also found that the addition of $CO_2$ did not alter the basic skeleton of $H_2-O_2$ reaction mechanism, but contributed to the formation and destruction of hydrocarbon products such as HCO. The conversion of CO was also suppressed and $CO_2$ played a role of a dilution in the reaction zone at the higher axial velocity gradient.

Mechanical Isolation Method for an Air Intake Duct with Vertical Temperature Gradient (수직 온도구배를 갖는 공기 흡입 덕트의 기계적 격리기법)

  • Jung, Chihoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2016
  • In a Direct Connect(DC) mode altitude engine test, a labyrinth seal is set up between an air intake duct and an engine. The labyrinth seal plays a key role in mechanically isolating them, which contributes to the accurate measurement of thrust and the other component forces. However, when high vertical temperature gradient is generated in the supplied air in the duct, the isolation breaks down. In this paper, a labyrinth seal control device is designed and installed in an effort to eliminate the issue. Test result shows the device successfully gets rid of the contact problem even when high vertical temperature gradient is produced.

Effect of initial ground temperature measurement on the design of borehole heat exchanger (초기 지중온도 측정이 지중 열교환기 설계에 미치는 영향)

  • Song, Yoon-ho;Kim, Seong-Kyun;Lee, Kang-Kun;Lee, Tae-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.600-603
    • /
    • 2009
  • We compared relative importance of thermal conductivity and initial ground temperature in designing borehole heat exchanger network and also we test accuracy of ground temperature estimation in thermal response test using a proven 3-D T-H modeler. The effect of error in estimating ground temperature on calculated total length of borehole heat exchanger was more than 3 times larger than the case of thermal conductivity in maximum 20% error range. Considering 10% of error in estimating thermal conductivity is generally acceptable, we have to define the initial ground temperature within 5% confidence level. Utilizing the mean annual ground surface temperature and the geothermal gradient map compiled so far can be a economic way of estimating ground temperature with some caution. When performing thermal response test for estimating ground temperature as well as measuring thermal conductivity, minimum 100 minutes of ambient circulation is required, which should be even more in case of very cold and hot seasons.

  • PDF