• Title/Summary/Keyword: thermal functionality

Search Result 92, Processing Time 0.027 seconds

Development of Monopropellant Propulsion System for Low Earth Orbit Observation Satellite

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Choi, Joon-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • The currently developed propulsion system(PS) is composed of propellant tank, valves, thrusters, interconnecting line assembly and thermal hardwares to prevent propellant freezing in the space environment. Comprehensive engineering analyses in the structure, thermal, flow and plume fields are performed to evaluate main design parameters and to verify their suitabilities concurrently at the design phase. The integrated PS has undergone a series of acceptance tests to verify workmanship, performance, and functionality prior to spacecraft level integration. After all the processes of assembly, integration and test are completed, the PS is integrated with the satellite bus system successfully. At present, the severe environmental tests have been carried out to evaluate functionality performances of satellite bus system. This paper summarizes an overall development process of monopropellant propulsion system for the attitude and orbit control of LEO(Low Earth Orbit) observation satellite from the design engineering up to the integration and test.

Thermal Stability and Surface Hardnes of UV-curable Epoxy Acrylate Coatings for Wooden Flooring (마루바닥재용 자외선 경화형 에폭시 아크릴레이트 도료의 열안정성과 표면경도)

  • Hwang, Hyeon-Deuk;Choi, Jae-Hoon;Moon, Je-Ik;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.121-129
    • /
    • 2008
  • Environmental friendly UV-curable coatings, having excellent hardness, gloss, mar and chemical resistance, are commonly used for the wooden flooring coatings. Especially epoxy acrylate oligomers are chosen for the wooden flooring coatings, due to their thermal stability and fast curing. In this study, we investigated the effect of the acrylate functionality on the thermal stability and surface hardness. The thermal degradations of monomers, oligomer, photoinitiator and formulated coatings with different acrylate functionality were measured using a thermogravimetric analysis (TGA). And the surface hardness was also measured with a pendulum hardness tester to compare relationship between the thermal stability and the physical property. The cured coatings became thermally stable by crosslinking during UV-curing. Both the thermal stability and surface hardness of cured coatings were improved with increasing acrylate functionality.

Key Technologies for Future Motor Drives

  • Lorenz Robert D.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.392-398
    • /
    • 2005
  • This paper presents technologies that have strategic importance in future motor drives. The underlying strategic issue for motor drives is maintaining cost while increasing certain dimensions of functionality. The dimensions of functionality which should increase include reliability and added value features such as providing continuous energy optimization, providing sensing of the driven system suitable for application specific diagnostic purposes, and providing continuously optimal thermal utilization of the capability of the drive. This paper will address each of these issues and discuss the technology status for each case, with a focus on research needed to fully deliver the needed functionality.

Comparative Study of Polymerization Environment for Hydrogel Ophthalmic Lens

  • Kim, Duck-Hyun;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.696-701
    • /
    • 2018
  • This study is carried out to evaluate the commercial feasibility of the room temperature and thermal polymerization method as a lens manufacturing method. All samples are found to be transparent after polymerization, thereby indicating that their physical and surface properties are suitable for hydrogel ophthalmic lenses. The optical and physical properties of the lenses are compared. The water content of the samples that are prepared via a room temperature polymerization process decreases with the addition of MMA as compared to the water content of the samples that are prepared via thermal polymerization. When MMA and DMA are used as an additive for improving functionality, the wettability of the lenses increases. By measuring the AFM, the surface roughness is shown to improve more than MMA and DMA. Therefore, it is judged to be an appropriate process for manufacturing hydrogel lenses with high functionality.

Heliostat Control System (Heliostat 제어시스템)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2009
  • Heliostat in the tower type solar thermal power plant is a mirror system tracking the sun's movement to collect the solar energy and it is the most important subsystem determining the efficiency of solar thermal power plant. Thus a good performance of it, which is mostly the accurate sun tracking performance under the various hazardous operating condition, is required. Heliostat control system is a system to manage the heliostat sun tracking movement and other operations. It also communicates with the master controller through the heliostat filed control system to receive and send the informations required to operate the heliostat as a part of the solar thermal power plant. This study presents a heliostat control system designed and developed for the 1MW solar thermal power plant. We first define the functionality of heliostat control system. Then sun tracking controller as well as the sun tracking algorithm satisfying the required functionality have been developed. We tested the developed heliostat control system and it showed a good performance in regulation of heliostat motion and communication.

Actual Condition Survey for Thermal Functionality Improvement of Female Student's Winter Uniforms (여고생 동복의 보온기능성 개선을 위한 실태조사)

  • Kim, Yu Mi;Lee, Jeong Ran
    • Fashion & Textile Research Journal
    • /
    • v.16 no.6
    • /
    • pp.954-960
    • /
    • 2014
  • This study surveyed high school girls in the Busan, Ulsan, and Gyeongnam areas to study how they wear school uniforms along with their satisfaction levels and demands in regards to functional school uniforms. This study presents data on the requirements for the development of winter school uniforms for high school girls with improved warmth functions. The findings are: First, high school girls purchased school uniforms of different brands and the purchase rates for three brands were 25% to 30% approximately. Most of them spent more than 300,000 KRW and less than 400,000 KRW on school uniforms purchases. Second, the greatest complaints by students about winter school uniforms were the ability to conduct routine activities and poor thermal insulation. The most popular bottom underwear for girls was underpants and leggings. The most popular top underwear was half-sleeved round neck t-shirts and running shirts. Third, a survey about uniform functionality showed that most students used and 'arm pit sweat absorbing pad', 'Waist size adjusting function, and 'inside pockets with zippers'. Satisfaction with functional uniforms was low: less than 3.5 in all questions. Fourth, students were favorable to develop functional uniforms to keep warm in the winter. The bottom needs to be warmer than the top and it is necessary to keep legs warm, especially the thighs and calves.

Synthesis and Properties of Photocurable Dimethylol Propionic Acid modified Hyperbranched Acrylates (광경화형 Dimethylol Propionic Acid 변성 하이퍼브랜치 아크릴레이트의 합성과 물성)

  • Kim, Dong Kook;Lim, Jin Kyu;Kim, Woo Geun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.342-347
    • /
    • 2005
  • Photocurable hyperbranched acrylates were prepared from acrylic acid and hyperbranched polyol (HBP-16, 32, 64). Physical properties of three kinds of photocurable hyperbranched acrylated were investigated. Thermal stability of UV cured film measured by TGA shifted to higher temperature with increasing of functionality. Hardness, abrasion resistance, and tensile strength of UV cured film also increased with increasing functionality of acrylate. Weathering test for UV cured film showed the value of yellow index increased with increasing functionality of acrylate.

Synthesis and Properties of Photocurable Dipentaerythritol Modified Polymethacrylates (광경화형 Dipentaerythritol 변성 폴리메타아크릴레이트의 합성과 물성)

  • Kim, Dong Kook;Lim, Jin Kyu;Kim, Woo Geun;Haw, Jung Rim
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.101-106
    • /
    • 2005
  • Photocurable modified 6 functional polyacrylate(PA-1) were prepared from dipentaerythritol derivatives (DPET) and acrylic acid, and 12 functional polymethacrylate(PA-2) were prepared from dipentaerythritol derivatives (DPET), trimellitic anhydride, and glycidyl methacrylate. And physical properties of photocurable modified poly(meth)acrylate were increased with increasing functionality of (meth)acrylate. Thermal stability of UV cured film obtained by using TGA was shifted to higher temperature as the increasing of functionality. Hardness, abrasion resistance and tensile strength of UV cured film were increased with increasing functionality of (meth)acrylate. Values of yellow index were increased with increasing functionality of (meth)acrylate.

A Study on the Functionality and Stability of LDPE-Nano ZnO Composite Film (LDPE-나노 ZnO 복합필름의 기능성 및 재질안정성 평가)

  • Lee, Wooseok;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this work, nano ZnO was introduced into low density poly ethylene (LDPE) composites films with various contents (0, 0.5, 1.0, 3.0 and 5.0 wt%) by melt-extrusion. Their basic properties such as crystallinity, chemical bonds and surface morphology were examined by XRD, FTIR and SEM. XRD patterns and FTIR peaks intensity were increased in proportion to the ZnO contents. SEM images showed well dispersed nano ZnO in LDPE composite films. Antimicrobial functionality of LDPE-nano ZnO composite films was also studied and the presence of nano ZnO resulted in significant improvement of antimicrobial functionality compared to the pure LDPE film. To evaluate influence of nano ZnO on LDPE properties required as packaging material, thermal, mechanical, gas barrier and optical properties of LDPE-nano ZnO composite films were characterized with various analytical techniques including TGA, UTM, OTR, WVTR and UV-Vis spectroscopy. As a result, except optical and mechanical properties of LDPE, no significant effects were found in other properties. Opacity of pure LDPE was greatly increased with increasing concentration of nano ZnO and tensile strength was also improved at 0.5wt% ZnO content.

Effect of Surface Treatment with Phosphoric acid on the Thermal Resistant Properties of Carbon/Phenolic Composite (인산 표면 처리가 탄소/페놀릭 복합재료의 내열성능에 미치는 영향)

  • 안덕중;박종규;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.77-82
    • /
    • 1999
  • 탄소 fabric 표면을 각기 다른 농도의 인산용액으로 표면처리함으로써 2-D 카본/페놀릭 복합 재료에 미치는 물성과 내 산화성, Arc plasma Torch test를 통하여 내열성등을 알아보았으며 ESCA를 통하여 인산 표면 처리에 의한 표면 functionality를 측정하였다.

  • PDF