• Title/Summary/Keyword: thermal denaturation

Search Result 80, Processing Time 0.03 seconds

Heat-Induced Denaturation of Salt Soluble Protein Extracted from Spent Layer Meat (산란 노계육에서 추출한 염용성 단백질의 열변성에 관한 연구)

  • 이성기;장호선;김희주
    • Food Science of Animal Resources
    • /
    • v.18 no.3
    • /
    • pp.209-215
    • /
    • 1998
  • Effects of protein concentration, ionic strength, pH, and temperature range on the heat-induced denaturation of salt soluble protein extracted from spent layer meat were investigated. Viscosity of salt soluble protein heated at 65$^{\circ}C$ for 30 min began to increase sharply above 7 mg/ml of breast protein concentration, and above 21 mg/ml of leg protein concentration, respectively. Both turbidity and viscosity showed the highest value in cooked protein solution with pH 6.0 and 1% NaCl. The turbidity of salt soluble protein started to increase continuously from 40$^{\circ}C$ to 80$^{\circ}C$. The viscosity increased rapidly from 45$^{\circ}C$ to 60$^{\circ}C$ in breast protein, and increased from 50$^{\circ}C$ to 55$^{\circ}C$ in leg protein, respectively, and then kept relatively constant. Breast protein had higher viscosity than leg protein during heat-induced gelation. Therefore, salt soluble protein from spent layer meat was associated with denatured protein (turbidity change) prior to gelation (viscosity change) during heating. Breast protein showed lower thermal transition temperature, and better gel formation than leg protein during heating.

  • PDF

Interaction of ct-DNA with 2,4-Dihydroxy Salophen

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh;Mirkhani, Valiollah
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1973-1977
    • /
    • 2009
  • In the present study, at first, 2,4-Dihydroxy Salophen (2,4-DHS), has been synthesized by combination of 1, 2-diaminobenzene and 2,4-dihydroxybenzaldehyde in a solvent system. This ligand containing meta-quinone functional groups were characterized using UV-Vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and 2,4-DHS, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of 2,4-DHS with ct-DNA was found to be (1.1 ${\pm}\;0.2)\;{\times}\;10^4\;M^{-1}.$ The fluorescence study represents the quenching effect of 2,4-DHS on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of 2,4-DHS concentration. Thermal denaturation experiments represent the increasing of melting temperature of DNA (about 3.5 ${^{\circ}C}$) due to binding of 2,4-DHS. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.

Biochemical Characteristics of the Granulosis Viruses DNA of Common Cabbage Worm, Pieris rapae and Pieris brassicae (배추흰나비 과립병바이러스 DNA의 생화학적 특성)

  • 류강선;진병래;강석권
    • Korean journal of applied entomology
    • /
    • v.30 no.2
    • /
    • pp.138-143
    • /
    • 1991
  • This study was carried out to acquire some basic biochemical informations on the granulosis virus (GV) DNA of Pieris rapae and Pieris brassicae. The thermal denaturation temperature (Tm) and G+C content of the DNA of the viruses were $83.7^{\circ}C$ and 35.5% for P. rapae GV, $84.0^{\circ}C$ and 35.9% for P. brassicae GV, respectively. There were some differences in the DNA fragmentation patterns of the two GV's produced by digestion with restriction endonucleases such as EcoR I , BamH I and Hind m . The homololgy between the two DNAs was caculated to be 97.0%. The size of the genome was estimated to be 103 kbp for P. rapae GV and 108 kbp for P. brassicae GV.

  • PDF

Changes of Hydrophobicity, Solubility, SH Group and Protein-Protein Interaction in Yellowtail Myosin and Whelk Paramyosin During Thermal Denaturation (가열 변성에 따른 방어 Myosin과 갈색띠 매물고둥 Paramyosin의 소수성, 용해도, SH기 및 단백질간 상호작용의 변화)

  • Choi, Yeung-Joon;Pyeun, Jae-Hyeung
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 1987
  • The denaturation mechanism of the protein during heating of myosin and paramyosin extracted from the ordinary muscle of yellowtail (Seriola qrinqueradits) and the adductor muscle of whelk (Neptunea arthritica cuming) were investigated by analyzing the hydrophobicity, solubility, SH group and protein-protein interaction. The free hydrophobic residue of the two proteins were increased by increase of heating temperature up to $65^{\circ}C$ and then decreased for further temperature raise. The protein-protein interaction was proportional to the increment of the free hydrophobic residue. The aggregation of protein was begun from $65^{\circ}C$ with the decrease of the free hydrophobic residues. The results of Arrhenius equation for the data on proteinprotein interaction showed that the denaturation course was made up with multi-steps in the myosin and two-steps in the paramyosin. The number of free hydrophobic residue and SH group, solubility and protein-protein interaction were significantly differed with the denaturation temperature (p<0.01).

  • PDF

Effects of ${\beta}$-Conglycinin and Glycinin on Thermal Gelation and Gel Properties of Soy Protein

  • Kang, Il-Jun;Lee, Young-Sook
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • Dynamic shear moduli of isolated soy protein solutions upon heating were measured to monitor gelation. Onsets of gelation coincide with onset temperatures of denaturation in glycinin and ${\beta}$-conglycinin solutions, whereas in isolated soy proteins, onset of gelation was above denaturation temperature of ${\beta}$-conglycinin with storage modulus increasing in two steps. The first increase in storage modulus of isolated soy proteins occurred at about $78.5^{\circ}C$, while the second increase started at about $93^{\circ}C$. Gel properties of soy protein gels having different proportions of glycinin and ${\beta}$-conglycinin were measured by compression-decompression test. ${\beta}$-conglycinin was responsible for gel elasticity. Glycinin significantly increased hardness, toughness, and fracturability of gels at high heating temperature near $100^{\circ}C$. Results reveal texture of soy protein gels can be controlled by regulating ratio of glycinin to ${\beta}$-conglycinin and heating temperature.

A Mueller Matrix Study for Measuring Thermal Damage Levels of Collagenous Tissues

  • Jun, Jae-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.310-317
    • /
    • 2006
  • Extensive research with polarimetry and Mueller matrix has been done for chemical measurements and possible cancer detection. However, the effect of thermally denatured biological tissue on polarization changes is not well known. The purpose of this study is to characterize polarization changes in collagen due to thermal denaturation. The variations in polarized state caused by thermal damage were investigated by obtaining the Mueller matrix elements of collagen sample at multiple thermal damage levels. The changes in birefringence of denatured collagen were also investigated. This information could be used to determine the extent of thermal damage level of clinically heat treated tissues.

A study on carbonization on the surface of steel sheet during the BAF annealing process (BAF 소둔공정에서 탄화 현상에 관한 연구)

  • Lee, Jong-Lyul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.42-49
    • /
    • 2018
  • In steel industries, cold-rolled sheet manufacturing is one of the links between the front and rear important industries for national competitiveness and high value-added production. In particular, in small and medium-sized enterprises, one of the major problems is the carbonization phenomenon of the steel sheet during the annealing process. Carbonization occurring on the surface of the coil help reduce steel production. After conducting various experiments to identify the cause of carbonization on the surface of a cold-rolled steel, the following results were obtained: (1) An analysis of the rolling oil, which is used in the field, revealed it to contain approximately 40 ppm carbonized material. (2) A comparison of the thermal denaturation characteristics of the fresh rolling oil and using rolling oil by FT-IR analysis showed that thermal denaturation had occurred, as shown by the significant decrease in the relative intensity of the 2900 and $1750cm^{-1}$ peaks. (3) The thermal decomposition of the rolling oil took place for the rolling oil at approximately $220^{\circ}C$. Furthermore, annealing experiments at $200^{\circ}C$ showed that the carbonization phenomenon of the sample was not observed. On the other hand, carbonization was observed at temperatures higher than $240^{\circ}C$.

Studies on the Denaturation of PSE Porcine Muscle Proteins by Differential Scanning Calorimetry (DSC를 이용한 PSE돈(豚) 육단백질(肉蛋白質)의 변성(變性)에 관한 연구(硏究))

  • Kim, Cheon-Jei;Honikel, K.O.;Choe, Byung-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 1989
  • The influence of the storage temperature and time after slaughter on the thermal denaturation of PSE porcine muscle protein was studied by differential scanning calorimetry and by measuring the solubility of the sarcoplasmic proteins. In the DSC therodiagram a decrease of the endotherm enthalpy of the myosin plus sarcoplasmic proteins in PSE muscle could be observed with an increase in the storage temperature and time of post mortem. Storage temperature at $20^{\circ}C$ during the first four hours of post mortem resulted in relatively slight denaturation of myosin plus sarcoplasmic proteins in PSE muscle. Storage temperature above $25^{\circ}C$ caused to increase the denaturation of muscle proteins. The minimal drip loss in PSE muscle could be observed, when the muscle was cooled to $2^{\circ}C$ as quickly as possible post mortem. However, when stored for several hours of post morte at a temperature between $32^{\circ}C-38^{\circ}C$, the drip loss reached the level established for PSE muscle. The paleness of PSE muscle could be prevented to some extent by rapid chill to $20^{\circ}C$ post mortem. The more the muscle proteins in the PSE muscle become denatured during the early storage period of post mortem, the more the drip loss increases. With the increase in the denaturation of myosin plus sarcoplasmic proteins in PSE muscle with regard to temperature of post mortem, there was a corresponding decrease in the solubility of the sarcoplasmic proteins in PSE muscle.

  • PDF