• Title/Summary/Keyword: thermal degradation temperature

Search Result 578, Processing Time 0.024 seconds

An Experimental Study on the Mechanical Properties Model of High Strength Concrete at High Temperature (고온시 고강도 콘크리트의 역학적 특성 모델 설정에 관한 실험적 연구)

  • Kim Heung-Yaul;Seo Chee-Ho;Jeon Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.5-8
    • /
    • 2005
  • This research is to present experimental materials model of high strength concrete for prediction of fire safety of structural members based on mechanical properties of materials during heating up to 800$^{circ}C$. The following conclusions are drawn from this study. First of all, between 100 to 200$^{circ}C$, the high strength concrete show degradation at 100$^{circ}C$ and restoration at 200$^{circ}C$. The high strength concrete show elastic deformation at 20 - 200$^{circ}C$. Second, between 300 to 400$^{circ}C$, the mechanical properties of the high strength concrete which are exposed to fire show $75\~95\%$ as compared to the original properties because the thermally expanded ingredients of concrete, aggregates and cement paste, etc. Finally, beyond 600$^{circ}C$, the high strength concrete shows $75\~80\%$ reduction in thermal properties as compared to the normal concrete in the range of 600 to 800$^{circ}C$ and it shows $10\~30\%$ as compared to the original properties.

  • PDF

Characteristic Accelerated Aging Assessment for Coolant Rubber Hose of Automotive Radiator (자동차 냉각기 고무호스의 가속 노화거동 평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Kang, Bong-Sung;Shin, Sei-Moon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.27-31
    • /
    • 2006
  • Rubber hoses for automobile radiators are apt to degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature were large. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens influenced by electro-chemical degradation (ECD) test increased, whereas their failure strain and IRHD hardness decreased. The hardness decreased further as the test site on the hose skin approached to the negative pole.

  • PDF

Phase Behavior of Binary and Ternary Blends Having the Same Chemical Components and Compositions

  • Yoo, Joung-Eun;Kim, Yong;Kim, Chang-Keun;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.303-310
    • /
    • 2003
  • The phase behavior of binary blends of dimethylpolycarbonate-tetramethyl polycarbonate (DMPCTMPC) copolycarbonates and styrene-acrylonitrile (SAN) copolymers has been examined and then compared with that of DMPC/TMPC/SAN ternary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of homopolymers. Both binary and ternary blends were miscible at certain blends compositions, and the miscible blends showed the LCST-type phase behavior or did not phase separated until thermal degradation temperature. The miscible region of binary blends is wider than that of the corresponding ternary blends. Furthermore, the phase-separation temperatures of miscible binary blends are higher than those of miscible ternary blends at the same chemical compositions. To explain the destabilization of polymer mixture with the increase of the number of component, interaction energies of binary pairs involved in these blends were calculated from the phase separation temperatures using lattice-fluid theory and then the phase stability conditions for the polymer mixture was analyzed with volume fluctuation thermodynamics.

Study on a compatibilization of polypropylene/thermotropic liquid crystalline polymer blends (폴리프로필렌/열방성 액정 고분자 블렌드의 상용화에 관한 연구)

  • Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1215-1219
    • /
    • 2007
  • In this paper, we present a study on the polypropylene/thermotropic liquid crystalline polymer blends. In previous researches, the blends are fabricated at very high temperatures, at least 300oC, since the TLCPs investigated in most studies have melting temperatures higher than 270oC. As a consequence, the thermal degradation of PP can not be avoidable. In order to obtain high physical properties, the excess amount of TLCP must be added. In this study, a new type of TLCP was used in the PP/TLCP blends. Since the new TLCP has a melting point of 220oC, the blending can be performed at much lower temperature than the previous studios. The new PP/TLCP shows similar or somewhat higher physical properties than those of the previous studies. It is proved that the new TLCP can be used as a reinforcement material in PP based blends.

  • PDF

Erosion properties of plasma sprayed zirconia Based coatings (지르코니아계 용사 코팅층의 Erosion 특성)

  • 신종한;임상규;임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.346-353
    • /
    • 2001
  • Zirconia powder containing 3 mol% yttria(3Y-PSZ) with and with out Fe$_2$O$_3$ addition was coated on tile cast iron substrate by plasma spraying method. The erosion experiments were performed at temperatures from $25^{\circ}C$ to $600^{\circ}C$. A gas blast type erosion tester was used to examine erosion behavior of the specimens. The results of 3Y-PSZ coatings showed that tile erosion rate had maximum value at 40$0^{\circ}C$. It coincided with tile results of phase transformation tetragonal phase to monoclinic phase caused by low temperature thermal degradation. The tensile stress relaxation and the micro-hardness improvement significantly influenced on the erosion rate at $600^{\circ}C$. In the case of Fe$_2$O$_3$ added 3Y-PSZ coatings, the erosion rate of tested at $25^{\circ}C$ showed maximum value at 5.0 mol% Fe$_2$O$_3$ added coating. This tendency is caused by the improvement of mechanical properties and the tensile residual stress. The erosion rate at 200'c and 400'L showed significantly decrease by Fe203 addition. This decrease is believed to be the stabilization of the tetragonal phase and the increase of micro-hardness.

  • PDF

Evaluation on the Cooling Performance to Design Heat sinks for LED lightings (LED 조명용 히트싱크 방열기 설계를 위한 냉각성능 평가)

  • Jung, Tae-Sung;Kang, Hwan-Kook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.778-784
    • /
    • 2012
  • In comparison with some other light sources, LED has merits such as increased life expectancy, fast response, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED has widely used in many industrial fields such as automotive, aviation, display, transportation and special lighting applications. Since the high heat generation of LED chips can cause a reduction in lifetime, degradation of luminous efficiency, and variation of color temperature, studies have been carried out on the optimization of LED packaging and heat sinks. In this study, experiments on measuring the heat generation rate of LED and the cooling performance of a heat sink were carried for analyzing the thermal characteristics of LED lighting system in free convection. From the results, dimensionless correlation on the cooling performance of heat sink in natural convection was proposed with Nusselt number and Rayleigh number as a guideline for designing cooling device of LED lightings.

Electrical Properties about Thermal and Water Degradation of Epoxy Powder for Bus Duct (부스닥트용 에폭시 분체도료의 열 및 수중열화에 대한 전기적 특성)

  • Kim, Hyun-Hee;Kim, Sang-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.17-22
    • /
    • 2009
  • Epoxy powder is being in use for insulation materials widely. Especially, in cause of coating insulation can be caused electrical fire and explosion by Joul's heat. This study has been compared and examined around breakdown, arc discharge, and V-t about insulation of Epoxy powder. Also, it has been researched about insulation which is cause of electrical fire and its basic data. According to temperature change, sample KS was stable before the Tg to be about $8{\sim}10%$ decrease in the breakdown test. In case of V-t and arc discharge, it had been kept up suitable characteristic. Also, in case of electrical characteristic, sample KS has excellent capacity.

The Effects of Electron Beam Irradiation on Thermal and Mechanical Properties of Electrospun Nylon 66 Nano-web (전기방사된 나일론66 나노웹의 열적·기계적 특성에 전자선 조사가 미치는 영향)

  • Jeun, Joon Pyo;Kang, Hyo-Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • Polyamide 66 (PA66) nanofibers with Triallyl cyanurate (TAC) were obtained by electrospinning of formic acid and chloroform solution. Electron beam irradiation of PA66 nanofiber with and without TAC was carried out over a range of absorbed doses (20~100 kGy) in nitrogen. The characterization of the irradiated PA66 nanofibers and PA66 nanofibers with TAC was done by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and universal testing machine (UTM). The results of the SEM image analysis confirmed that the morphology of PA66 nanofibers was not altered by electron beam. The amount of TAC in PA66 nanofiber with TAC was identified by $^1H-NMR$ analysis. The degradation temperature of PA66 nanofibers with TAC at an absorbed dose of 20~100 kGy was higher than the irradiated PA66 nanofiber without TAC. On the other hand, the decreasing rate of modulus of irradiated PA66 nanofibers with TAC was less than PA66 nanofibers.

CO2 Separation Techniques Using Ionic Liquids (이온성 액체를 이용한 CO2 분리기술)

  • Cho, Min Ho;Lee, Hyunjoo;Kim, Honggon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Since carbon dioxide, $CO_2$, was revealed as a major greenhouse gas, techniques for its separation, capture, and storage have received increasing interest in recent years. Aqueous amines are the most widely accepted $CO_2$ absorbents, but they cause the problems such as high regeneration energy, thermal degradation, and loss of absorbents due to their volatility. Ionic liquids having high thermal stability, extremely low vapor pressure, and capability of selectively absorbing specific gases have been proposed as new $CO_2$ capturing solvents which may potentially replace aqueous amines. By reviewing the ionic liquids having capability to absorb $CO_2$ reported in previous papers, we seek to develop a comprehensive understanding on the factors that influence the $CO_2$ solubility in ionic liquids such as their structures, absorption temperature, pressure, water content, etc., and to estimate the potential of ionic liquids as $CO_2$ separating media.

On the Composites of Poly(ethylene terephthalate) with a Liquid Crystalline Polyester (액정 폴리에스테르와 폴리(에틸렌 테레프탈레이트)의 복합재료 연구)

  • Choi, Jae-Kon;Bang, Moon-Soo;Han, Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-83
    • /
    • 1997
  • Blends of thermotropic liquid crystalline polymer(TLCP) with poly(ethylene terephthalate) (PET) were prepared by the coprecipitation from a common solvent. The blends were processed through a capillary die at $287^{\circ}C$ to produce a monofilament. Morphology and mechanical, thermal properties of blends and composites were examined by differential scanning calorimetry(DSC), tensile test, optical microscopy and scanning electron microscopy. Crystallization kinetics of the blends were investigated by the isothermal DSC method. The Avrami analyses were applied to obtain the information on the crystal growth geometry and factors controlling the rate of crystallization. In the blends, liquid crystalline phase did not reveal any significant macrophase separation and thermal degradation at the processing temperature. From scanning electron micrographs of cryogenic fracture surfaces of extruded fibers, the TLCP domains were found to be more or less finely dispersed with $0.1{\mu}m$ to $0.2{\mu}m$ in size. Interfacial adhesion between the TLCP and matrix polymer was excellent. Tensile strength and modulus of TLCP/PET in-situ fiber composites were enhanced with increasing draw ratio and LCP content.

  • PDF