• 제목/요약/키워드: thermal degradation temperature

검색결과 576건 처리시간 0.03초

Preparation and characterization of boron-nitrogen coordination phenol resin/SiO2 nanocomposites

  • Gao, J.G.;Zhai, D.;Wu, W.H.
    • Advances in materials Research
    • /
    • 제3권1호
    • /
    • pp.259-269
    • /
    • 2014
  • The boron-nitrogen-containing phenol-formaldehyde resin (BNPFR)/$SiO_2$ nanocomposites (BNPFR/$SiO_2$) were synthesized in-situ, and structure of BNPFR/$SiO_2$ nanocomposites was characterized by FTIR, XRD and TEM. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposites cured with different nano-$SiO_2$ content are determined by torsional braid analysis (TBA). The thermal degradation kinetics was investigated by thermogravimetric analysis (TGA). The results show that nano-$SiO_2$ particulate with about 50 nm diameter has a more uniformly distribution in the samples. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposite is $214^{\circ}C$ when nano-$SiO_2$ content is 6 wt%. The start thermal degradation temperature $T_{di}$ is higher about $30^{\circ}C$ than pure BNPFR. The residual rate (%) of nanocomposites at $800^{\circ}C$ is above 40 % when nano-$SiO_2$ content is 9 %. The thermal degradation process is multistage decomposition and following first order.

2.5Y-TZP의 안정성에 관한 연구 (Thermal Stability of 2.5Y-TZP under Low-Temperature Aging)

  • 장성도;오경영
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.226-232
    • /
    • 1990
  • The degradation phenomena and thermal stability of 2.5Y-TZP at low-temperature were studied by means of XRD, Raman spectra and microstructural analysis. The degradation of heat-treated 2.5Y-TZP at 20$0^{\circ}C$-20hr in air was observed on the TZP surface, be caused by the cracks generated from tlongrightarrowm transformation, and the cracks was propagated inside the polycrystalline body. The ZrO2 grain boundaries and grains near the crack were revealed as if these were diffused and dissolved. And it was also observed mlongrightarrowt transformation as the degraded TZP was refired at 140$0^{\circ}C$, and it was thought to be the fact that the moisture in atmosphere during the aging process contributed to the degradation. The thermal stability of 2.5Y-TZP was improved dramatically with an addition of 3w/o CeO2 or a provision of high Y2O3 concentration on the TZP surface.

  • PDF

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.

계면활성제를 이용한 합성고분자 수용액의 마찰저항감소 및 퇴화 특성 향상 연구 (The Study on Drag Reduction Rates and Degradation Effects in Synthetic Polymer Solution with Surfactant Additives)

  • 이동민;김남진;윤석만;김종보
    • 설비공학논문집
    • /
    • 제13권3호
    • /
    • pp.194-199
    • /
    • 2001
  • The turbulent flow resistance of water solution with polymer is reduced as compared with that of pure water. This effects is named th drag reduction and offers the significant reduction of the pumping power and the energy consumption. But the intense shear forces and the high temperature experienced by the polymer solution when passing through the pipes cause the degradation a loss of drag reduction effectiveness. Especially, the degradation behavior is found to be strongly dependent on temperature. This mechanical and thermal degradation can be avoided by adding materials such as surfactant to the polymer solution, which enhance the bonding force between molecules. In the present study, Copolymer and SDS were utilized and they were mixed in 10 different mixture ratios, while total concentration was fixed as 100wppm. Degradation of Copolymer-SDS mixture solutions was investigated experimentally in closed loop at the temperature of $10^{\circ}C\; and\; 80^{\circ}C$ with various flow average velocities of 1.5 m/sec, 3.0m/sec, and 4.5m/sec. Degradation characteristics of polymer solution without surfactant show a radical loss of drag reduction effectiveness at high temperature. Degradation alleviation ability of surfactant is especially effective at high temperature. Consequently, this results show that the addition of surfactant to the polymer solution can control unfavorable degradation phenomena for high temperature systems.

  • PDF

Characteristics of Sucrose Thermal Degradation with High Temperature and High Pressure Treatment

  • Woo, Koan-Sik;Hwang, In-Guk;Lee, Youn-Ri;Lee, Jun-Soo;Jeong, Heon-Sang
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.717-723
    • /
    • 2009
  • Thermal degradation characteristics of sucrose was investigated. A 20% sucrose solution was heated to temperatures of $110-150^{\circ}C$ for 1-5 hr. Chromaticity, pH, organic acids, 5-hydroxymethylfurfural (HMF), free sugars, electron donating ability (EDA), and ascorbic acid equivalent antioxidant capacity (AEAC) of the heated sucrose solutions were evaluated. With increasing temperatures and times, the L-, a-, and b-values decreased; however, total color difference (${\Delta}E_{ab}$) increased. The pH and sucrose contents decreased, and fructose and glucose contents increased with increasing heating temperature and time. Organic acids, such as formic acid, lactic acid, and levulinic acid, and HMF contents increased with increasing heating temperatures and times. EDA (%) and the AEAC of the heated sucrose solutions increased with increasing heating temperature and time. The heated sucrose solution was more effective than unheated sucrose solution, having higher EDA (90 fold), and AEAC (13 fold).

LaNi5의 intrinsic degradation 거동에 관한 연구 (A Study on the Intrinsic Degradation Behavior of LaNi5)

  • 안효준;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제2권1호
    • /
    • pp.77-82
    • /
    • 1990
  • To investigate the effect of strains heat effect and thermal energy on the intrinsic degradation of $LaNi_5$, the changes of P-C-Isotherm curves under the condition of mainly applied one of the above factors were investigated. The revesible hydrogen storage capacity decreased by means of the hydrogenation at high temperature without cyclings or pressure induced cyclings with low thermal energy. The degree of degradation was more severe as the heat of hydrogenation reaction increased. Thus the intrinsic degradation of $LaNi_5$ depended upon lattice strain as well as thermal energy.

  • PDF

Cryogenic Fracture Toughness Evaluation for Austenitic Stainless Steels by Means of Unloading Compliance Method

  • Yu, Hyo-Sun;Kwon, Il-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.26-34
    • /
    • 2001
  • Most research to date concerning the cryogenic toughness of austenitic stainless steels has concentrated on the base metal and weld metal in weldments. The most severe problem faced on the conventional austenitic stainless steel is the thermal aging degradation such as sensitization and carbide induced embrittlement. In this paper, we investigate the cryogenic toughness degradation which can be occurred for austenitic stainless in welding. The test materials are austenitic stainless JN1, JJ1 and JK2 steels, which are materials recently developed for use in nuclear fusion apparatus at cryogenic temperature. The small punch(SP) test was conducted to detect similar isothermally aging condition with material degradation occurred in service welding. The single-specimen unloading compliance method was used to determine toughness degradation caused by thermal aging for austenitic stainless steels. In addition, we have investigated size effect on fracture toughness by using 20% side-grooved 0.5TCT specimens.

  • PDF

필라멘트 와인딩 복합재의 환경노화에 따른 기계적물성 평가 (Behaviors of Mechanical Properties of Filament-Winding-Laminated Composites due to Environmental Aging)

  • 최낙삼;윤영주;이상우;김덕재
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.31-35
    • /
    • 2006
  • Degradation characteristics of filament-winded composites due to accelerated environmental aging have been evaluated under high temperature, water immersion and thermal impact conditions. Two kinds of laminated composites coated by an urethane resin have been used: carbon-fiber reinforced epoxy(T700/Epon-826, CFRP) and glass-fiber reinforced phenolic (E-glass/phenolic, GFRP). For tensile strength of $0^{\circ}$ composites, CFRP did high reduction by 25% under the influence of high temperature and water while CFRP showed little degradation. However for water-immersed $90^{\circ}$ composites both CFRP and GFRP showed high reduction in tensile strength. Bending strength and modulus of $90^{\circ}$ composites were largely reduced in water-immersion as well as high temperature environment. Urethane coating on the composite surface improved the bending properties by 20%, however hardly showed such improvement for water-immersed $90^{\circ}$ composites.

  • PDF

열가소성 폴리우레탄으로 개질된 폴리카보네이트에서 TPU의 열분해 (Thermal Degradation of Thermoplastic Polyurethane Modified with Polycarbonate)

  • 권회진;차윤종;최순자
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.314-325
    • /
    • 2000
  • 경질 사슬(HS) 함량이 각각 35.5 (TPU-35)와 53.4 wt% (TPU-53)인 열가소성 폴리우레탄(TPU)으로 개질된 폴리카보네이트(PC)의 열분해 특성을 DSC, GPC 및 FT-IR로 연구하였다. 경질 사슬 함량이 큰 TPU의 T$_{g}$가 높게 나타났으며, PC/TPU 블렌드에서 HS 함량에 관계없이 열처리 온도와 TPU 함량이 증가함에 따라 PC의 T$_{g}$가 감소하였다. 이는 열처리에 따른 열가소성 TPU물질의 열분해 현상에 기인한 것인데, PC/TPU-35 블렌드는 24$0^{\circ}C$에서, PC/TPU-53은 25$0^{\circ}C$에서 관찰되었다. DSC로 측정된 열분해 온도는 GPC에 의한 블렌드 조성별 분자량과 분자량 분포도 및 점도 측정으로도 재확인되었다. PC/TPU-35와 PC/TPU-53의 두 가지 블렌드를 열분해 온도의 전ㆍ후에서 가열한 시료를 FT-IR로 분석한 결과, PC의 카르보닐 스트레칭은 1774$cm^{-1}$ /, TPU는 1732와 1704$cm^{-1}$ /에서 나타났으며, 블렌드에서는 두 가지 구성물질의 특성피크(카르보닐기와 N-H 그룹)에 변화가 없는 것으로 보아, 두 가지 블렌드 사이의 분자간 상호작용이나 에스테르 교환반응의 가능성이 없는 증거로 생각된다. 아울러 분해온도 이전에서 가공된 시료의 두께 의존성 충격강도 및 굴곡강도를 측정하고, 상 형태학과도 비교하였다.다.

  • PDF