• 제목/요약/키워드: thermal degradation temperature

검색결과 578건 처리시간 0.033초

상온 경화형 실리콘 접착제의 내엔진 오일성에 관한 연구 (A Study on the Engine Oil Resistant Behaviors of Room Temperature Vulcanizing Silicone Adhesives)

  • 박수진;김범용;김종학;주혁종;김준형
    • Elastomers and Composites
    • /
    • 제40권3호
    • /
    • pp.196-203
    • /
    • 2005
  • 본 논문에서는 상온 경화형 실리콘 접착제의 표면 특성, 열안정성, 접착력, 그리고 모폴로지 분석을 통하여 접착제의 내엔진 오일성 평가 및 고장분석을 시행하였다. 실험 결과, 엔진오일의 침투는 접착제 시편의 표면에서 중앙으로 진행되었으며, 열화시간에 따라 접착제 시편중에 오일의 함량은 점차 증가하였으며, 접착제의 Si-O-Si 결합은 점차 분해되었다. TGA 실험결과로부터 열분해는 접착제 시편의 표면과 밑 부분에서 발생함을 알 수 있었다. 상온 경화형 실리콘 접착제의 내엔진 오일 시험 후 접착제 시편의 인장강도, 신율, 접착력 등의 물성이 모두 현저하게 감소하였으며, 이는 엔진오일의 흡수와 열화에 의해 초기 접착제 성질을 많이 상실한 것으로 판단된다. 또한, SEM 분석을 통하여 접착제 시편의 파괴모드는 열화시간이 증가함에 따라 응집 파괴에서 계면 파괴로 나타남을 확인하였다.

Effect of Hot Pressing/Melt Mixing on the Properties of Thermoplastic Polyurethane

  • Lee, Young-Hee;Kang, Bo-Kyung;Kim, Han-Do;Yoo, Hye-Jin;Kim, Jung-Soo;Huh, Jae-Ho;Jung, Young-Jin;Lee, Dong-Jin
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.616-622
    • /
    • 2009
  • In-depth understanding of the influence of hot pressing and melt processing on the properties of thermoplastic polyurethane (TPU) is critical for effective mechanical recycling of TPU scraps. Therefore, this study focused on the effects of hot pressing and melt mixing on molecular weight (MW), polydispersity index (PDI), melt index (MI), characteristic IR peaks, hardness, thermal degradation and mechanical properties of TPU. The original TPU pellet (o-TPU) showed two broad peaks at lower and higher MW regions. However, four TPU film samples, TPU-0 prepared only by hot pressing of o-TPU pellet and TPU-1, TPU-2 and TPU-3 obtained by hot pressing of melt mixed TPUs (where the numbers indicate the run number of melt mixing), exhibited only a single peak at higher MW region. The TPU-0 film sample had the highest $M_n$ and the lowest PDI and hardness. The TPU-1 film sample had the highest $M_w$ and tensile modulus. As the run number of melt mixing increased, the peak-intensity of hydrogen bonded C=O stretching increased, however, the free C=O peak intensity, tensile strength/elongation at break and average MW decreased. All the samples showed two stage degradations. The degradation temperatures of TPU-0 sample (359 $^{\circ}C$ and 394 $^{\circ}C$)were higher than those of o-TPU (342 $^{\circ}C$ and 391 $^{\circ}C$). While all the melt mixed samples degraded at almost the same temperature (365 $^{\circ}C$ and 381 $^{\circ}C$). The first round of hot pressing and melt mixing was found to be the critical condition which led to the significant changes of $M_n$/$M_w$/PDI, MI, mechanical property and thermal degradation of TPU.

자동차 전장 보드용 고온 무연 솔더의 신뢰성 평가 (Evaluation on Reliability of High Temperature Lead-free Solder for Automotive Electronics)

  • 고용호;유세훈;이창우
    • 마이크로전자및패키징학회지
    • /
    • 제17권4호
    • /
    • pp.35-40
    • /
    • 2010
  • 본 연구에서는 상용 고온 솔더 중 많이 쓰이고 있는 Sn-3.5Ag, Sn-0.7Cu, Sn-5.0Sb 솔더에 대한 열충격 시험, 열싸이클 시험, 고온 진동 복합 시험 신뢰성 평가를 하였다. 테스트 샘플을 제작하기 위해 Sn-3.5Ag, Sn-0.7Cu, Sn-5.0Sb 솔더볼을 ENIG 표면 처리된 BGA에 접합하였으며, 그 후 BGA샘플을 OSP 표면 처리된 PCB에 실장 하였다. 신뢰성평가 동안 저항변화를 측정하였으며 신뢰성 평가 전후 전단강도 시험을 통하여 접합강도의 변화를 평가하였다. Sn-3.5Ag의 솔더인 경우 전기저항과 접합강도의 저하가 비교 평가한 3가지 솔더 중 가장 높은 저하율을 보였으며 Sn-0.7Cu의 솔더가 신뢰성 평가 후에 비교적 높은 안정성을 나타내었다.

Fabrication of Cu2ZnSnS4 Films by Rapid Thermal Annealing of Cu/ZnSn/Cu Precursor Layer and Their Application to Solar Cells

  • Chalapathy, R.B.V.;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae;Kwon, HyukSang
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.82-89
    • /
    • 2013
  • $Cu_2ZnSnS_4$ thin film have been fabricated by rapid thermal annealing of dc-sputtered metal precursor with Cu/ZnSn/Cu stack in sulfur ambient. A CZTS film with a good uniformity was formed at $560^{\circ}C$ in 6 min. $Cu_2SnS_3$ and $Cu_3SnS_4$ secondary phases were present at $540^{\circ}C$ and a trace amount of $Cu_2SnS_3$ secondary phase was present at $560^{\circ}C$. Single-phase large-grained CZTS film with rough surface was formed at $560^{\circ}C$. Solar cell with best efficiency of 4.7% ($V_{oc}=632mV$, $j_{sc}=15.8mA/cm^2$, FF = 47.13%) for an area of $0.44cm^2$ was obtained for the CZTS absorber grown at $560^{\circ}C$ for 6 min. The existence of second phase at lower-temperature annealing and rough surface at higher-temperature annealing caused the degradation of cell performance. Also poor back contact by void formation deteriorated cell performance. The fill factor was below 0.5; it should be increased by minimizing voids at the CZTS/Mo interface. Our results suggest that CZTS absorbers can be grown by rapid thermal annealing of metallic precursors in sulfur ambient for short process times ranging in minutes.

高分子物質의 熱分解에 關한 硏究 (第1報) 熱天秤에 依한 硏究 (On the Pyrolysis of Polymers I. Thermogravimetric Analysis of Polymers)

  • 성좌경
    • 대한화학회지
    • /
    • 제7권2호
    • /
    • pp.96-105
    • /
    • 1963
  • The weight decrease curves of 18 kinds of polymers have been measured by thermobalance at the same condition where temperature is increased $1^{\circ}C$ per minutes under nitrogen or air atmosphere. The curves are further differentiated to obtain rate curve of weight decrease. Those curve offer a method to compare relative thermal stability, effects of oxygen or modes of thermal degradation of polymers qualitatively. The curves could be classified into following four types: Polystyrene, polymethylmethacrylate and acetal polymer belong to the first type. Those polymers depolymerize mainly into corresponding monomers, weight decrease curves are steepy up to perfect vaporization of polymers and rate curves show a relatively sharp peak. (Type I) Polyvinyl chloride represents the second type. This polymer decomposes with splitting off of hydrogen chloride. The thermogravimetric curve rises rapidly at first, then level off at the moderate weight decrease and gradually rises. Polyvinyl acetate also belongs to this class. (Type II) The modification of the second type is represented by polyester. The curve at the early stage is less steep, the leveling off at the next stage is less clear and the final rising of the curve is steeper than the normal second type. Polyamide, polyurethane, and polycarbonate belong to this type. (Type II') The thermal decomposition of the third type polymers is more complex than that of others. Various irregular chain scissions including side chain splitting and depolymerization to monomers occur simultaneously. The weight of the polymer decreases gradually and the rate curve does not show sharp peaks. Polyvinyl alcohol and diene polymers belong to this type. (Type III) Generally, polycondensation polymers are more stable toward heat than addition polymers and polymers having aromatic nucleus show good thermal stability. Polymers having tertiary carbon atoms such as polystyrene or polypropylene and acetal resin start decomposition under airatmosphere at the temprature below $50^{\circ}C$ or more of the temperature where the polymers start decomposition under nitrogen atmosphere.

  • PDF

Bisphenol계 DGEBA/DGEBS 에폭시 블렌드 시스템의 열적 특성 및 파괴인성 (Thermal Properties and Fracture Toughness of Bisphenol-Based DGEBA/DGEBS Epoxy Blend System)

  • 박수진;김범용;이재락;신재섭
    • 폴리머
    • /
    • 제27권1호
    • /
    • pp.33-39
    • /
    • 2003
  • 본 논문에서는 비스페놀계 2관능성 에폭시 수지 DGEBA/DGEBS 블렌드 시스템의 경화거동, 열안정성, 그리고 파괴인성 특성을 고찰하였다. DGEBA/DGEBS 블렌드 시스템의 함량비율을 100 : 0, 90 : 10, 80 : 20, 70 : 30, 그리고 60 : 40 wt%까지 변화시켰으며, DSC에 의한 열분석을 통하여 Ozawa식으로 경화 활성화 에너지 ($E_a$)를 계산하였으며, TGA 열분석을 사용하여 열분해 개시 온도(IDT), 최대 무게 감량시 온도($T_{max}$), 그리고 적분 열분해 진행 온도(IPDT) 등 열안정성 인자를 고찰하였다. 경화된 시편의 파괴인성 특성은 크랙성장 저항을 나타내는 임계응력세기 인자 ($K_{IC}$) 실험을 통하여 알아보았으며, 주사전자현미경 (SEM)을 사용하여 시편의 파단 특성을 조사하였다. 실험 결과 DGEBA/DGEBS 블렌드 시스템의 $E_a$, IPDT, 그리고 $K_{IC}$는 DGEBS 함량이 20 wt%인 경우 최대값을 나타내었는데, 이는 설폰기의 도입으로인한 치밀한 네트워크 구조의 형성때문이라 사료된다.

열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석 (Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation)

  • 변상원;김영신;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

분진필터링 적용을 위한 SiC 섬유의 고온 열화분석 (Degradation analysis of SiC fiber at elevated temperature for dust filtering applications)

  • 주영준;박청호;허스에르덴;김철진
    • 한국결정성장학회지
    • /
    • 제27권1호
    • /
    • pp.28-33
    • /
    • 2017
  • SiC 섬유는 $1800^{\circ}C$까지 불활성과 공기 분위기에서 융해나 산화 문제 없이 사용할 수 있다. SiC 섬유는 분진 필터링 공정의 백필터로 상업화된 산업용 백 필터보다 훨씬 높은 온도인 $500^{\circ}C$ 이상의 온도에서 사용이 가능하다. 하지만 제강 산업과 화력발전소의 극한 환경에서 미세 분진과의 반응으로 인한 SiC 섬유의 열화에 대한 연구는 부족하다. 따라서 본 실험에서는 SiC 섬유를 제강 분진, 화력발전소 분진과 $500^{\circ}C$ 이상의 고온에서 반응시켜 섬유 표면의 열화된 형상을 SEM으로 관찰하고 섬유 표면 및 내부로의 산소 확산의 정도를 EDS로 분석하였다.

Laccase Immobilization on Copper-Magnetic Nanoparticles for Efficient Bisphenol Degradation

  • Sanjay K. S. Patel;Vipin C. Kalia;Jung-Kul Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.127-134
    • /
    • 2023
  • Laccase activity is influenced by copper (Cu) as an inducer. In this study, laccase was immobilized on Cu and Cu-magnetic (Cu/Fe2O4) nanoparticles (NPs) to improve enzyme stability and potential applications. The Cu/Fe2O4 NPs functionally activated by 3-aminopropyltriethoxysilane and glutaraldehyde exhibited an immobilization yield and relative activity (RA) of 93.1 and 140%, respectively. Under optimized conditions, Cu/Fe2O4 NPs showed high loading of laccase up to 285 mg/g of support and maximum RA of 140% at a pH 5.0 after 24 h of incubation (4℃). Immobilized laccase, as Cu/Fe2O4-laccase, had a higher optimum pH (4.0) and temperature (45℃) than those of a free enzyme. The pH and temperature profiles were significantly improved through immobilization. Cu/Fe2O4-laccase exhibited 25-fold higher thermal stability at 65℃ and retained residual activity of 91.8% after 10 cycles of reuse. The degradation of bisphenols was 3.9-fold higher with Cu/Fe2O4-laccase than that with the free enzyme. To the best of our knowledge, Rhus vernicifera laccase immobilization on Cu or Cu/Fe2O4 NPs has not yet been reported. This investigation revealed that laccase immobilization on Cu/Fe2O4 NPs is desirable for efficient enzyme loading and high relative activity, with remarkable bisphenol A degradation potential.

Low Temperature Plasma-Enhanced Atomic Layer Deposition Cobalt

  • 김재민;김형준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.28.2-28.2
    • /
    • 2009
  • Cobalt thin film was fabricated by a novel NH3-based plasma-enhanced atomic layer deposition(PE-ALD) using Co(CpAMD) precursor and $NH_3$ plasma. The PE-ALD Co thin films were produced well on both thermally grown oxide (100 nm) $SiO_2$ and Si(001) substrates. Chemical bonding states and compositions of PE-ALD Co films were analyzed by XPS and discussed in terms of resistivity and impurity level. Especially, we successfully developed PE-ALD Code position at very low growth temperature condition as low as $T_s=100^{\circ}C$, which enabled the fabrication of Co patterns through lift-off method after the deposition on PR patterned substrate without any thermal degradation.

  • PDF