• Title/Summary/Keyword: thermal decomposition combustion

Search Result 77, Processing Time 0.031 seconds

Fire Resistance Characteristics of Polyolefin cable Insulating Materials for Flame Retardant (난연성 폴리 올레핀 케이블 절연재료의 내화특성)

  • Yoon, Hun-Ju;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.251-254
    • /
    • 2001
  • In this paper, we analyzed the properties change of electric wire when the thermal stress was applied to NFR-8 and FR-PVC 600[V] wire. Messurement is made of the attenuation of a light beam by smoke accumulating with in a closed chamber due to nonflaming pyrolytic decomposition and flaming combustion. Results are expressed in terms of specific optical density which is derived from a geometrical factor and the measured optical density a measurement characteristic of the concentration of smoke. Referenced documents were ASTM E662 standard test method for specific Ds genalated by solid materials. The furnace control system shall maintain the required irradiance level under steady-state condition with the chamber door closed of $2.5{\pm}0.04[w/cm^{2}]$ for 20 min. According to the results of the smoke density analysis of NFR-8 and FR-PVC the highest decomposition flaming smoke density range of NFR-8 and FR-PVC were 25.2 to 37.5 and 51.1 respectively. Nonflaming smoke density range of NFR-8 and FR-PVC were 100.4 to 112.2 and 126.5 to 398.8. The amount of carbon monoxide generated was found to be much higher in FR-PVC decomposition than in NFR-8 due to incomplete combustion of FR-PVC which has high content of carbon in compound.

  • PDF

Fire Resistance Characteristics of Polyolefin cable Insulating Materials for Flame Retardant (난연성 폴리 올레핀 케이블 절연재료의 내화특성)

  • 윤헌주;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.251-254
    • /
    • 2001
  • In this paper, we analysed the properties change of electric wire when the thermal stress was applied to NFR-8 and FR-PVC [600] wire. Measurement is made of the attenuation of a light beam by smoke accumulating with in a closed chamber due to nonflamining pyrolytic decomposition and flaming combustion. Results are expressed in terms of specific optical density which is derived from a geometrical factor and the measured optical density a measurement characteristic of the concentration of smoke. Referenced documents were ASTM E662 standard test method for specific Ds generated by solid materials. The furnace control system shall maintain the required irradiance level under steady-state condition with the chamber door closed of 2.5${\pm}$0.04[w/$\textrm{cm}^2$] for 20 min. According to the results of the smoke density analysis of NFR-8 and FR-PVC the highest decomposition flaming smoke density range of NFR-8 and FR-PVC were 7.2 to 77.5 and 51.1 respectively. Nonflaming smoke density range of NFR-8 and FR-PVC were 100.4 to 112.2 and 126.5 to 398.8. The amount of carbon monoxide generated was found to be much higher in FR-PVC decomposition than in NFR-8 due to incomp1ete combustion of FR-PVC which has high content of carbon in compound.

  • PDF

Performance Evaluation of a Multistage-Cyclone Pre-heating Calciner and a Rotary Kiln Calciner: Case of a Cement Process (다단사이클론 예열소성로와 로터리킬른 소성로의 성능 모형평가: 시멘트공정사례)

  • Eom, Taegyu;Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.14-27
    • /
    • 2015
  • Calcination, which represents thermal decomposition of $CaCO_3$, is the key reaction in a cement process. Some reactions including heating-up also take place simultaneously in the calcination reactors. Basic thermal performance and dimensions of the reactors in two cases, which are a rotary kiln wih a four-stage cyclone pre-heater and a simple single rotary kiln, were compared. To employ the heat transfer, mass transfer and reaction rate as well as calcination, one-dimensional modeling was conducted in each case. Some simplification about the reactors was described, however, the reliable Nusselt number and heat transfer coefficients on the reactors were used to make results reliable.

A Study on the Damage by Burning Characteristics of Insulating Materials of RCD (누전차단기 절연재료의 소손 특성에 관한 연구)

  • Lee, Chun-Ha;Kim, Shi-Kuk;Ok, Kyung-Jae;Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.62-66
    • /
    • 2009
  • In this study, we study the damage by burning characteristics of insulating material of RCD (Residual Current Device) used in Korea. The insulating materials of RCD manufactured by three manufacturers are used as the sample. We compare and analyze the thermal decomposition characteristics, combustion characteristics and tracking characteristics of samples. The TGA and Mass Loss Calorimeter meeting the requirements for the ISO5660 (Fire tests-Reaction to Fire, part 1) are used for analyzing the thermal decomposition characteristics and combustion characteristics respectively. In addition, the tracking characteristics are analyzed according to standard of KSC IEC 60112 known as the test used for measuring the resistance tracking and comparison tracking indexes. The study results show that the resistance tracking property of insulating material provided by A Company is highest. Also, the test results show that the resistance tracking property of insulating material provided by B Company is lowest. However, the thermal stability of insulating material provided by this company is excellent at high temperature of above $350^{\circ}C$. In addition, the test results show that the thermal stability of insulating material provided by C Company is highest at temperature of below $400^{\circ}C$.

A Study on Combustion Characteristics due to Changes in Solid Refuse Fuel Properties (고형연료제품 성상 변화에 따른 연소특성에 관한 연구)

  • Lim, Jong-Wan;Dong, Jong-In;Yoon, Kyoon-Duck;Shim, Jae-Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.686-691
    • /
    • 2015
  • A basic research for utilizing solid refuse fuel (SRF) based on changing SRF properties (RDF, RPF) and types (pellet, fluff) is demonstrated. Physicochemical characteristics of SRF and also changes in thermal decomposition depending on combustion time and emission gas (NOx, CO, HCl, etc) concentration were investigated for applications to waste energy sources. In conclusion, RPF is easy to pelletize, and has better combustion efficiency, higher LHV, higher thermal reduction, and short combustion time because it is composed of plastic wastes homogeneously. Also, fluff type samples have better combustion efficiency, and short combustion time because it has wider exposed surface area for combustion. It can also save energy consumption for pelletizing.

A Study on Synthesis of Functional Composite Latex and Characteristics of Thermal Decomposition (기능성 복합 라텍스의 합성과 열분해 특성에 관한 연구)

  • Kwon, Jae-Beom;Kim, Nam-Suk;Lee, Nae-Woo;Seul, Soo-Duck
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • Emulsion polymerization ws carried out using Alkyl methacrylate(RMA) like MMA, EMA, BMA and Styrene Monomer(SM) for core-shell latex preparation. It was synthesized at $80^{\circ}C$ in the presence of anionic surfactant SLS(Sodium Lauryl Sulfate). FT-IR and DSC analysis are used to confirm the synthesized core-shell emulsion latexes. Moreover DSC and TGA were used to investigate the thermal characterisitcs of them. The differences of the decomposition rate and the activation energy from TGA and DSC analysis are not so big. It considers that the pendent group is not affect of the thermal characteristics and stability on core-shell latexes, which is synthesized with RMA and Styrene. For investigating combustion products, LC50 values were calculated by FED(Fractional Effective Dose)from the Pyrolyzer-Mass sepctrometer.

Combustion Characteristics and Thermal Properties for Wood Flour-High Density Polyethylene Composites (목분-고밀도폴리에틸렌 복합체의 연소성 및 열적특성)

  • Shin, Baeg-Woo;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.89-95
    • /
    • 2012
  • In this study, we were manufactured wood flour-HDPE composites by modular co-rotating twin screw extruder with L/D ratio of 42. We was measured cone calorimeter test and thermogravimetric analysis (TGA) to find the combustion characteristics and thermal properties for wood flour-HDPE composites. We then evaluated the effect of three additive-type flame retardants on fire resistance performance. The cone calorimeter test showed that the heat release rate (HRR) of untreated composites was the highest Peak HRR ($446.6kW/m^2$) as well as Mean HRR ($185.5kW/m^2$). From the TGA, it was shown that composites added flame retardants began early thermal decomposition and improved thermal stability.

Investigation on Behavior of HAN-based Propellant Droplet at High Temperature (고온에서 HAN 계열 추진제 액적의 거동에 대한 연구)

  • Hwang, Chang Hwan;Baek, Seung Wook;Han, Cho Young;Kim, Su Kyum;Jeon, Hyung Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.329-332
    • /
    • 2012
  • The droplet behavior of 83.9 wt.% HAN water solution was investigated experimentally with various ambient temperature and nitrogen environment. At the initial stage of evaporation under thermal decomposition temperature of HAN, gradual decreasing of droplet diameter was observed. After that, the droplet started to expand due to the internal pressure build up by water nucleation inside the droplet. The micro explosion was observed at higher temperature than the decomposition temperature of HAN and the remaining droplet showed similar behavior of single composition droplet. The decreasing rate was augmented as the ambient temperature increasing.

  • PDF

A Study on Total Fire Risk Assessment of Wallpapers (벽지의 종합적 화재 위험성 평가에 관한 연구)

  • 박미라;김광일;김태구
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2003
  • The purpose of this study is to evaluate flame retardant performance, thermal stability and toxicity of combustion gases for some commercial wallpapers. ID evaluate flame retardant performance 45 degree combustion experiment method was used and thermal stability was evaluated using DSC and TGA apparatus (OSC-50/Shimadzu, TGA2050/TA Instruments Inc) . Concentrations of CO, $CO_2$, HCN and HCI were measured with (GASTEC/Japan, MSA400 Gas Monitor/Infitron Inc) and toxicity indices using NIST N-Gas Model were applied to evaluate the toxicity of combustion gases. The evaluation produced the following results : First, paper cork and PVC wallpaper treated with flame retardants were found to be suitable for flame retardant performance standards. Second, paper, cork and PVC wallpaper non-treated with flame retardants were shown to be relatively more hazardous because they had greater calorific values and a faster decomposition time than the flame retardant treated wallpapers. Third, the toxicity indices of non-treated wallpapers were found to be higher than those of treated wallpapers, and the toxicity index of PVC wallpapers was higher than those of paper and cork wallpapers.

Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace (항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가)

  • Seo, Sang-Kyu;Kim, Yun-Chul;Bae, Ji-Yeul;Hahm, Hee-Chul;Hwang, Tae-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.355-363
    • /
    • 2021
  • Heat resistance performance evaluation and thermal analysis were performed to confirm the applicability of the lyocell-based carbon/phenolic composite material for heat-resistant parts for aerospace. Heat resistance performance evaluation of carbon/phenolic was conducted by Thermal Protection Evaluation Motor (TPEM). In this paper, boundary layer integration code considering the boundary layer analysis of combustion gas and MSC-Marc 2018 considering ablation and thermal pyrolysis were used for the thermal analysis. The ablation and thermal insulation performance were analyzed by the pressure curve of test motor and the cut carbon/phenolic specimens. The thermal response of the lyocell-based carbon/phenolic material was similar to that of the rayon-based carbon/phenolic material. Based on the results through the combustion test, the applicability of heat-resistant parts for aerospace to which domestic lyocell-based carbon fibers were applied was confirmed.