• Title/Summary/Keyword: thermal cycles

Search Result 498, Processing Time 0.026 seconds

TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM (접시형 태양열 집광 시스템을 이용한 열화학 사이클의 수소생산)

  • Kwon, Hae-Sung;Oh, Sang-June;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.169-176
    • /
    • 2011
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction)and W-D (Water Decomposition)steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $NiFe_2O_4/m-ZrO_2$powder, was successfully achieved hydrogen production with 9 (10 with a Xe-light solar simulator, 2009, Kodama et al.) repeated cycles under field conditions. Two foam device used in this study were tested for validation before an experiment was performed. The lab scale ferrite-conversion rate was in the range of 24~76%. Two foam devices were designed to for structural stability in this study. In the results of the experiments, the hydrogen percentage of the weight of each foam device was 7.194 and $9.954{\mu}mol\;g^{-1}$ onaverage, and the conversion rates 4.49~29.97 and 2.55~58.83%, respectively.

  • PDF

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint (세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성)

  • Park, Young-Chul;Hue, Sun-Chul;Boo, Myoung-Hwan;Kim, Hyun-Su;Kang, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템 개발)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

Effect of Cyclic Moisture Content Changes on Shrinkage and Thermal Conductivity in Domestic Quercus acutissima Carr. and Larix Kaempferi Carr. (국내산 상수리나무와 일본 잎갈나무의 수축율과 열전도율에 대한 주기적인 함수율 변화의 영향)

  • Mun, Sung-Hee;Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.41-50
    • /
    • 2002
  • Small clear specimens of Quercus acutissima Carr. and Larix caempferi Carr. were used to measure shrinkage and thermal conductivity for the reasonable and effective use. All samples were conditioned to 18, 12, 5% moisture contents in a humidity chamber of 86, 66, 20% relative humidity(RH), respectively and room temperature(23℃) All specimens were conducted on the shrinkage and thermal conductivity test at each MCs. These processes(cycle) were repeated three times. The radial and tangential shrinkages of Quercus acutissima Carr. and Larix caempferi Carr. decreased at each level of MCs, with the increasing cycles. The radial and tangential shrinkages increased as the specific gravity(on oven-dry weight and volume basis) increased. Thermal conductivities of the radial and tangential direction of Quercus acutissima Carr. and Larix caempferi Carr. increased at each levels of MCs, with increasing cycles. Good correlations were obtained between shrinkages and thermal conductivities of radial and tangential direction, and specific gravity (on oven-dry weight and oven-dry volume basis) and MC.

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.

Data Analysis of KOMPSAT Thermal Test in Simulated On-orbit Environment

  • Kim, Jeong-Soo;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.30-42
    • /
    • 2000
  • On-orbit thermal environment test of KOMPSAT was performed in early 1999. An analysis of the test data are addressed in this paper. For the thermal-environmental simulation of spacecraft bus, an artificial heating through the radiator zones and onto some critical heat-dissipating electronic boxes was made by Absorbed-heat Flux Method. Test data obtained in terms of temperature history were reduced into flight heater duty cycles and converted into the total electrical power required for spacecraft thermal control. Verification result of flight heaters dedicated to the bus thermal control is presented. Additionally, an exhaustive heating-control process for maintaining the spacecraft thermally safe and for realistic simulation of the orbital-thermal environment during the test are graphically shown. Qualitative suggestions to post-test model correlation are given in consequency of the analysis.

  • PDF

Thermal Fatigue Life Prediction of Engine Exhaust Manifold (엔진 배기매니폴드의 열피로 수명 예측)

  • Choi, Bok-Lok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.139-145
    • /
    • 2007
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermomechanical cyclic loadings. The analysis includes the FE model of the exhaust system, temperature dependent material properties, and thermal loadings. The result shows that at an elevated temperature, large compressive plastic deformations are generated, and at a cold condition, tensile stresses are remained in several critical zones of the exhaust manifold. From the repetitions of thermal shock cycles, plastic strain ranges could be estimated by the stabilized stress-strain hysteresis loops. The method was applied to assess the low cycle thermal fatigue for the engine exhaust manifold. It shows a good agreement between numerical and experimental results.