• Title/Summary/Keyword: thermal cycles

Search Result 498, Processing Time 0.024 seconds

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle (주급수 유량의 유효 모델(커널 회귀)에 대한 연구)

  • Yang, Hac-Jin;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.663-670
    • /
    • 2019
  • Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

Effects of Microalloying Elements on Microstructures and Toughness of Simulated HAZ in Quenched and Tempered Steels

  • Chang, W.S.;Yoon, B.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • A series of experiments has been carried out to investigate the effect of titanium, boron and nitrogen on the microstructure and toughness of simulated heat affected zone (HAZ) in quenched and tempered (QT) type 490MPa yield strength steels. For acquiring the same strength level, the carbon content and carbon equivalent could be lowered remarkably with a small titanium and boron addition due to the hardenability effect of boron during quenching process. Following the thermal cycle of large heat input, the coarsened grain HAZ (CGHAZ) of conventional quenched and tempered (QT) type 490MPa yield strength steels exhibited a coarse bainitic or ferrite side plate structure with large prior austenite grains. While, titanium and boron bearing QT type 490MPa yield strength steels were characterized by the microstructure in the CGHAZ, consisting mainly of the fine intragranular ferrite microstructure. Toughness of the simulated HAZ was mainly controlled by the proper Ceq level, and the ratio of Ti/N rather than titanium and nitrogen contents themselves. In the titanium­boron added QT steels, the optimum Ti/N ratio for excellent HAZ toughness was around 2.0, which was much lower than the known Ti/N stoichiometric ratio, 3.4. With reducing Ti/N ratio from the stoichiometric ratio, austenite grain size in the coarse grained HAZ became finer, indicating that the effective fine precipitates could be sufficiently obtained even with lower Ti/N level by adding boron simultaneously. Along with typical titanium carbo­nitrides, various forms of complex titanium­ and boron­based precipitates, like TiN­MnS­BN, were often observed in the simulated CGHAZ, which may act as stable nuclei for ferrite during cooling of weld thermal cycles

  • PDF

${\mu}$BGA and ${\mu}$Spring Packages for Rambus DRAM Applications and Their Electrical Characteristics (Rambus DRAM실장용 ${mu}!$BGA (Ball Grid Array) 및 ${mu}!$Spring 패키지와 전기적 특성)

  • Kim, Jin-Seong;Yu, Yeong-Gap
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.4
    • /
    • pp.243-250
    • /
    • 2001
  • This paper presents the structure of a $\mu$Spring package, its fabrication process and an analysis of its electrical characteristics compared to that of a $\mu$BGA. It was found that both $\mu$BGA and $\mu$Spring packages provide with outstanding high speed signal transmission characteristics due to their lower inductance of package interconnection lines, smaller than half of inductance of TSOP package lines. Even the worst case substrate trace of a Rambus DRAM $\mu$Spring package yields the line inductance of 2.9nH, which provides with 25% margin compared to the Rambus DRAM specification of 4nH. The fabrication cost of $\mu$Spring package is lower than that of $\mu$BGA by 50%, passes 1000 thermal cycles, meets JEDEC Level 1 specification whereas $\mu$BGA does not, and thereby yields high reliability and strong competing power.

  • PDF

Study on the Electrolyte Added Chlorosulfuric Acid for All-vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 전해액으로 클로로황산 첨가에 관한 연구)

  • OH, YONG-HWAN;LEE, GEON-WOO;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.2
    • /
    • pp.169-175
    • /
    • 2016
  • The electrolyte added the chlorosulfuric acid ($HSO_3Cl$) as an additive was tested for the electrolyte in all-vanadium redox flow battery (VRFB) to increase the thermal stability of electrolyte. The electrolyte property was measured by the CV (cyclic voltammetry) method. The maximum value of a voltage and current density in the electrolyte added $HSO_3Cl$ was higher than that in the electrolyte non-added $HSO_3Cl$. The thermal stability of the pentavalent vanadium ion solution, which was tested at $40^{\circ}C$, increased by adding $HSO_3Cl$. The performances of VRFB using the electrolyte added and non-added $HSO_3Cl$ were measured during 30 cycles of charge-discharge at the current density of $60mA/cm^2$. An average energy efficiency of the VRFB was 72.5%, 82.4%, and 81.6% for the electrolyte non-added $HSO_3Cl$, added 0.5 mol of $HSO_3Cl$, and added 1.0 mol of $HSO_3Cl$, respectively. VRFB using the electrolyte added $HSO_3Cl$ was showed the higher performance than that using the electrolyte non-added $HSO_3Cl$.

Characterization of Acryl Polymer Concretes for Ultra Thin Overlays (초박층 덧씌우기용 아크릴 폴리머 콘크리트의 특성 연구)

  • Kim, Dae-Young;Kim, Tae-Woo;Lee, Hyun-Jong;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • This study is performed to evaluate the physical and mechanical characteristics of an acryl polymer concrete that is developed as an overlay material for cement concrete slabs and pavements. Various laboratory tests including viscosity, flow, compressive strength, flexural strength, tensile strength, linear shrinkage, thermal expansion and thermal compatibility tests are performed. It is observed from the laboratory tests that the acryl polymer concrete developed in this study satisfies all the requirements suggested by ACI guideline. In addition to the laboratory tests, an accelerated performance testing (APT) is conducted to validate the performance of the acryl polymer concrete. During the APT, no significant distresses are observed until 15,903,939 cycles of equivalent single axle loading is applied. Finally, a 10mm thick overlay with the acryl polymer concrete is applied on top of an old deteriorated concrete pavement to evaluate field performance. Right after the field construction, skid resistance, noise and roughness are measured. The skid resistance and noise level have been significantly improved while the roughness is increased. Periodic investigation for the field study section will be conducted to evaluate the long-term performance.

Thermoelectric Performance Enhancement of Sintered Bi-Te Pellets by Rotary-type Atomic Layer Deposition (로터리형 원자층 증착법을 이용한 Bi-Te계 소결체의 열전 성능 개선)

  • Myeong Jun Jung;Ji Young Park;Su Min Eun;Byung Joon Choi
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • Thermoelectric materials and devices are energy-harvesting devices that can effectively recycle waste heat into electricity. Thermoelectric power generation is widely used in factories, engines, and even in human bodies as they continuously generate heat. However, thermoelectric elements exhibit poor performance and low energy efficiency; research is being conducted to find new materials or improve the thermoelectric performance of existing materials, that is, by ensuring a high figure-of-merit (zT) value. For increasing zT, higher σ (electrical conductivity) and S (Seebeck coefficient) and a lower κ (thermal conductivity) are required. Here, interface engineering by atomic layer deposition (ALD) is used to increase zT of n-type BiTeSe (BTS) thermoelectric powders. ALD of the BTS powders is performed in a rotary-type ALD reactor, and 40 to 100 ALD cycles of ZnO thin films are conducted at 100℃. The physical and chemical properties and thermoelectric performance of the ALD-coated BTS powders and pellets are characterized. It is revealed that electrical conductivity and thermal conductivity are decoupled, and thus, zT of ALD-coated BTS pellets is increased by more than 60% compared to that of the uncoated BTS pellets. This result can be utilized in a novel method for improving the thermoelectric efficiency in materials processing.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Study on the Physical Characteristics of Water Supply Steel Pipe according to Temperature Change (수도용 강관의 온도변화에 따른 물리적 특성에 대한 연구)

  • Kim, Woo-young;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.733-740
    • /
    • 2017
  • 'The facilities standards of water supply' issued by the Ministry of Environment in 2004 indicates that expansion joints cannot be used in welding water supply steel pipes. However, their reason is not clear and it is difficult to confirm the stability of the steel pipe for a water supply pipeline. The purpose of this study is to determine whether or not an expansion joint is necessary to improve the stability of water supply in steel pipe through a displacement analysis of the pipework. The test results are as follows. Firstly, it was found that expansion and contraction of the water supply steel pipe (D 2,400 mm) occur repeatedly in 4 cycles per year, and the maximum expansion and contraction amount of the pipe is 13.03 mm in 1.24 km pipelines. Secondly, the thermal stress caused by expansion and contraction of the steel pipe is $13.7{\sim}36.1kgf/cm^2$ according to the burial depth (0~4 m). The main comparison factors to determine the stability of the steel pipe (STWW 400) were the allowable tensile strength and the fatigue limit, which were computed to be $4,100kgf/cm^2$ and $1,840kgf/cm^2$, respectively. Finally, the thermal stress of the steel pipe is very small compared to the allowable tensile stress and fatigue stress. Therefore, thermal stress does not affect the stability of the steel pipe, although the expansion and contraction of the steel pipe occurs by temperature changes. In conclusion, the study demonstrated that expansion joints are not required in water supply steel pipelines.

Basic performance analysis of ocean thermal energy conversion using the refrigerant mixture R32/R152a (R32/R152a 혼합냉매를 적용한 해양온도차발전의 기초성능해석)

  • Cha, Sang Won;Lee, Ho Saeng;Moon, Deok Soo;Kim, Hyeon Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.502-507
    • /
    • 2014
  • In this paper, performance characteristics of cycles were studied when mixed working fluid was used for ocean thermal energy conversion (OTEC). Among the various mixed refrigerants for industrial heat-pump, R32/R152a used in ocean thermal energy conversion system. For simulations, R32/R152a were used in existing closed cycle and Kalina cycle which is used only ammonia and water as mixed refrigerant. Temperature of the warm heat source was 26 and 29 celsius degree, temperature of the cold heat source was 5 celsius degree. In results of simulation, Gross power of the closed cycle on R32 was 22kW, and efficiency of the cycle was 2.02%. When the mixed refrigerant of R32/R152a, in the ratio of 90 to 10, gross power of the closed cycle was 29.93kW, and efficiency of the cycle was 2.78%. Gross power and cycle efficiency of R32/R152a increased by 36% and 37% than those of existing single refrigerant. Additionally, the same simulations were conducted in Kalina cycle with the same various composition ratio of mixed refrigerant.

Practical Application of Lead-free Solder in Electronic Products

  • Cho Il-Je;Chae Kyu-Sang;Min Jae-Sang;Kim Ik-Joo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.93-99
    • /
    • 2004
  • At present, LG Electronics pushes ahead to eliminate the Pb(Lead) -a hazardous material- from all products. Especially, we have performed to select the optimum standard composition of lead free alloy for the application to products for about 3 years from 2000. These days, we have the chance for applying to the mass-production. This project constructed the system for applying the lead free solders on consumer electronic products, which is one of the major products of the LG Electronics. To select the lead free solders with corresponding to the product features, we have passed through the test and applied with Sn-3.0Ag-0.5Cu alloy system to our products, and for the application to the high melting temperature composition, we secured the thermal resistance of the many parts and substrate and optimized the processing conditions. We have operated the temperature cycling test and the high temperature storage test under the standards to confirm the reliability of the products. On these samples, we considered the consequence of our decision by the operating test. For the long life time of the product, we have operated the temperature cycling test at $-45^{\circ}C-+125^{\circ}C$, 1 cycle/hour, 1000 cycles. Also we have tested the tin whisker growth about lead free plating on lead finish. We have analyzed with the SEM, EDS and any other equipment for confirming the failure mode at the joint and the tin whisker growth on lead free finish.

  • PDF