• Title/Summary/Keyword: thermal cycles

Search Result 498, Processing Time 0.023 seconds

Thermal Ratchetting of the Conductive Adhesives Joints Subjected to the Thermal Cycles (전도성 접착제의 열경화 응력에 대한 해석)

  • 박주혁;서승호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.208-213
    • /
    • 2002
  • When a thermoset conductive adhesive joints are subjected to the thermal cycles, the thermal stresses are developed around the joints. Most of in-plane, hi-axial components of these residual stresses induces large tensile peel stresses and weakens adhesive joints. Also these stresses vary with thermal cycles, and result in thermal fatigue loading and debonding propagation. In this study, the thermal ratchetting effect in conductive adhesive joints are evaluated by the finite element analysis with the viscoelastic material model. In order to Investigate the relationship between thermal ratchetting and glass transition temperature, the mathematical material model has been developed experimentally by dynamic mechanical analysis. These material models are implemented to the finite element analysis with thermal loading cycles. And the stress profiles around the conductive adhesive joints are calculated. It has been observed that the thermal ratchetting occurs when the maximum temperature of thermal cycles is above the glass transition temperature. The peel and shear stress components increase as the thermal loading time increases. This will contributes to thermal fatigue fracture of the joints.

  • PDF

Prediction of Thermal Fatigue Life of Alumina ceramics (알루미나 세라믹스의 열피로 수명 예측)

  • 정우찬;한봉석;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.871-875
    • /
    • 1999
  • Theoretical equation to calculate thermal fatigue life was derived in which slow crack growth theory was adopted. The equation is function of crack growth exponent n. Cyclic thermal fatigue tests were performed at temperature difference of 175, 187 and 200$^{\circ}C$ respectively. At each temperature difference critical thermal fatigue life cycles of the alumina ceramics were 180,37 and 7 cycles. And theoretical thermal fatigue life cycles were calculated as 172, 35 and 7 cycles at the same temperature difference conditions. Therefore thermal fatigue behavior of alumina ceramics can be represented by derived equation. Also theoretical single cycle critical thermal shock temperature difference can be calculated by this equation and the result was consistent with the experimental result well.

  • PDF

Thermal Fatigue Behavior of Thermal Barrier Coatings by Air Plasma Spray (대기플라즈마 용사법으로 제조된 열차폐코팅의 열피로특성 평가)

  • Lee, Han-sang;Kim, Eui-hyun;Lee, Jung-hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.363-369
    • /
    • 2008
  • Effects of top coat morphology and thickness on thermal fatigue behavior of thermal barrier coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and $300{\mu}m$ respectively. The thickness of top coat was about $700{\mu}m$ in the perpendicular cracked specimen (PCS). Under thermal fatigue condition at $1,100^{\circ}C$, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and thermally grown oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

A study for multi thermal cycle effect on mechanical property change in carbon epoxy composite (탄소섬유 복합재료의 열사이클에 의한 물성치 변화에 관한 연구)

  • 최순권;박세만;박명균
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.43-48
    • /
    • 2000
  • Composite materials have been increasingly used in automotive and aircraft industries, naturally leading to active researches on the materials. The carbon-epoxy composite is selected to study its thermal characteristics. During multiple thermal cycles composed of repeated cooling and heating variations of elastic constants are investigated to understand thermal effects on the carbon-epoxy composite. In this investigation longitudinal resonance method and flexural resonance method was used to characterize. The values of $E_1$ show small amount of increases depending on number of cycles of the thermal fatigue processes whereas values of $G_13$ do not indicate noticeable changes. Also, in cases of $E_2$ and $G_23$ their values decrease to a certain extend in initial stages after applications of thermal fatigue processes. However, the number of cycles of the applied thermal fatigue processes does not seem to affect their values.

  • PDF

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading

  • Bai, Bing;Shi, Xiaoying
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.707-721
    • /
    • 2017
  • The objective of this paper is to experimentally study the consolidation of saturated silty clay subjected to repeated heating-cooling cycles using a modified temperature-controlled triaxial apparatus. Focus is placed on the influence of the water content, confining pressure, and magnitudes and number of thermal loading cycles. The experimental results show that the thermally induced pore pressure increases with increasing water content and magnitude of thermal loading in undrained conditions. After isothermal consolidation at an elevated temperature, the pore pressure continues to decrease and gradually falls below zero during undrained cooling, and the maximum negative pore pressure increases as the water content decreases or the magnitude of thermal loading increases. During isothermal consolidation at ambient temperature after one heating-cooling cycle, the pore pressure begins to rise due to water absorption and finally stabilizes at approximately zero. As the number of thermal loading cycles increases, the thermally induced pore pressure shows a degrading trend, which seems to be more apparent under a higher confining pressure. Overall, the specimens tested show an obvious volume reduction at the completion of a series of heating-cooling cycles, indicating a notable irreversible thermal consolidation deformation.

Mechanical strength of FBG sensor exposed to cyclic thermal load for structural health monitoring

  • Kim, Heonyoung;Kang, Donghoon;Kim, Dae-Hyun
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.335-340
    • /
    • 2017
  • Fiber Bragg grating (FBG) sensors are applied to structural health monitoring (SHM) in many areas due to their unique advantages such as ease of multiplexing and capability of absolute measurement. However, they are exposed to cyclic thermal load, generally in the temperature range of $-20^{\circ}C$ to $60^{\circ}C$, in railways during a long-term SHM and the cyclic thermal load can affect the mechanical strength of FBGs. In this paper, the effects of both cyclic thermal load and the reflectivity of FBGs on the mechanical strength are investigated though tension tests of FBG specimens after they are aged in a thermal chamber with temperature changes in a range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Results from tension tests reveal that the mechanical strength of FBGs decreases about 8% as the thermal cycle increases to 100 cycles; the mechanical strength then remains steady until 300 cycles. Otherwise, the mechanical strength of FBGs with reflectivity of 6dB (70%) and 10dB (90%) exhibits degradation values of about 6% and 12%, respectively, compared to that with reflectivity of 3dB (50%) at 300 cycles. SEM photos of the Bragg grating parts also show defects that cause their strength degradation. Consequently, it should be considered that mechanical strength of FBGs can be degraded by both thermal cycles and the reflectivity if the FBGs are exposed to repetitive thermal load during a long-term SHM.

A Study on Variations of mechanical properties of Carbon-epoxy Composites with Thermal Fatigue Cycles or Thermal Shock Cycles (열적 피로 및 충격이 부가된 Carbon-Epoxy 복합재료의 기계적 특성에 관한 연구)

  • Lee, Dong-Sik;Park, Se-Man
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.354-659
    • /
    • 2000
  • Applications of composite materials have been in progress noticeably in manufacturing areas of automotive, aircraft and in other industries, resulting in ensuing research activities. Carbon-epoxy, one of major composite materials, is investigated for its thermal characteristics. Upon treatments of the composite material with repeated heatings and coolings variations of its elastic constants are monitored to reveal the thermal nature of the composite material. In this study, generally, changes in elastic constants are observed to occur mostly during the first 10~20 thermal cycles. Values of G(sub)13 remain almost unchanged except a minor decrease. However in the observed small changes thermal shocks produce less effect than thermal fatigues. On the other hand, values of $E_1$show gradual increases with the num-ber of applied thermal cycles and temperatures. Meanwhile, values of $E_2$ and G(sub)23 decrease to a certain extent in the early stage during the applications of thermal cycling but are not appreciable affected by frequencies of thermal cy-cles. Also, thermal shocks are observed to induce different effects depending on treatment temperatures.

  • PDF