• Title/Summary/Keyword: thermal contact

Search Result 1,210, Processing Time 0.03 seconds

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

Design of air-cooled waste heat removal system with string type direct contact heat exchanger and investigation of oil film instability

  • Moon, Jangsik;Jeong, Yong Hoon;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.734-741
    • /
    • 2020
  • A new air-cooled waste heat removal system with a direct contact heat exchanger was designed for SMRs requiring 200 MW of waste heat removal. Conventional air-cooled systems use fin structure causing high thermal resistance; therefore, a large cooling tower is required. The new design replaces the fin structure with a vertical string type direct contact heat exchanger which has the most effective performance among tested heat exchangers in a previous study. The design results showed that the new system requires a cooling tower 50% smaller than that of the conventional system. However, droplet formation on a falling film along a string caused by Rayleigh-Plateau instability decreases heat removal performance of the new system. Analysis of Rayleigh-Plateau instability considering drag force on the falling film surface was developed. The analysis results showed that the instability can be prevented by providing thick string. The instability is prevented when the string radius exceeds the capillary length of liquid by a factor of 0.257 under stagnant air and 0.260 under 5 m/s air velocity.

Experimental Study of Dynamic Behavior of a Water Droplet on Diverse Wrinkling Surfaces (마이크로 표면주름 구조에 따른 물방울 동적거동에 관한 실험적 연구)

  • Baek, Dae Hyeon;Zhao, Zhijun;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.577-585
    • /
    • 2015
  • We fabricated multi-scale such as macro-, micro-, and multi-scale wrinkles by using repetitive volume dividing (RVD) method and thermal curing process. Also wrinkle surface was modified with coating of a self-assembled monolayer (SAM). We measured the contact angle of each wrinkled surface, and observed the behavior of droplets on sloping surface. Through experimental study, we found out that the contact angle was much higher in case of multi-scale and SAM coated wrinkles. And micro-scale wrinkle showed a high contact angle comparing with that of macro-scale wrinkle. Dynamic behaviors of a water droplet like sliding velocity on diverse wrinkled surfaces were dependent on their static contact angles. These results showed that hydro-dynamic characteristics were changed depending on the wrinkle structure and the material forming the wrinkle. These dynamic characteristics can be utilized in bio-chip, microfluidics, and many others in order to control easily chemical reactivity.

Effect of non-thermal atmospheric pressure nitrogen and air plasma on the surface properties and the disinfection of denture base resin (상온대기압 질소 및 공기 플라즈마가 의치상용 레진의 표면 특성과 살균효과에 미치는 영향)

  • Seo, Hye-Yeon;Yoo, Eun-Mi;Choi, Yu-Ri;Kim, Soo-Hwa;Kim, Kwang-Mahn;Kim, Kyoung-Nam
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.5
    • /
    • pp.783-788
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma jet(NTAPPJ) on surface properties and Streptococcus mutans disinfection of denture base resin. Methods : Self-cured denture base resin (Jet denture repair resin, Lang dental Mfg, co., USA) was used to make specimen($12mm{\times}2mm$). To observe surface change before and after plasma process, surface roughness and contact angle were measured. For sterilization experiments, the surfaces of specimens were treated with nitrogen and air NTAPPJ for 1 minute after S. mutans was inoculated on the material surfaces. Results : Before plasma process, surface roughness of denture base resin was $0.21{\mu}m{\pm}0.02{\mu}m$. After air and nitrogen NTAPPJ process, surface roughness was $0.19{\mu}m{\pm}0.03{\mu}m$ and $0.18{\mu}m{\pm}0.01{\mu}m$ respectively. There was no significant difference(p>0.05). Contact angle of control group without plasma process was $83.81^{\circ}{\pm}3.14^{\circ}$, while after plasma treatment, contact angles of air NTAPPJ and nitrogen NTAPPJ groups were $63.29^{\circ}{\pm}2.27^{\circ}$ and $46.68^{\circ}{\pm}5.82^{\circ}$ respectively. The result showed a significant decrease in contact angle after plasma process(p<0.05). Compared to the control group 6020.33(CFU/mL) without plasma process, CFU decreased significantly after air NTAPPJ 90.75(CFU/mL) and nitrogen NTAPPJ 80.25(CFU/mL) treatment(p<0.05). Conclusions : It was considered that NTAPPJ can be used for denture disinfection without changing surface properties of materials.

Effect of Annealing Time on Electrical Performance of SiZnSnO Thin Film Transistor Fabricated by RF Magnetron Sputtering

  • Ko, Kyung Min;Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.99-102
    • /
    • 2015
  • Thin film transistors (TFTs) with amorphous 2 wt% silicon-doped zinc tin oxide (a-2SZTO) channel layer were fabricated using an RF magnetron sputtering system, and the effect of post-annealing treatment time on the structural and electrical properties of a-2SZTO systems was investigated. It is well known that Si can effectively reduce the generation of oxygen vacancies. However, it is interesting to note that prolonged annealing could have a bad effect on the roughness of a-2SZTO systems, since the roughness of a-2SZTO thin films increases in proportion to the thermal annealing treatment time. Thermal annealing can control the electrical characteristics of amorphous oxide semiconductor (AOS) TFTs. It was observed herein that prolonged annealing treatment can cause bumpy roughness, which led to increase of the contact resistance between the electrode and channel. Thus, it was confirmed that deterioration of the electrical characteristics could occur due to prolonged annealing. The longer annealing time also decreased the field effect mobility. The a-2SZTO TFTs annealed at 500℃ for 2 hours displayed the mobility of 2.17 cm2/Vs. As the electrical characteristics of a-2SZTO annealed at a fixed temperature for long periods were deteriorated, careful optimization of the annealing conditions for a-2SZTO, in terms of time, should be carried out to achieve better performance.

Numerical Study of Impact of Microdroplet Containing Nanoparticles (나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구)

  • Roh, Sang-Eun;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.609-617
    • /
    • 2012
  • The impact, spreading and recoil processes of a nanoparticle-laden droplet impacting on a horizontal solid surface are numerically investigated by solving the conservation equations for mass, momentum, energy and mass fraction. The liquid-air interface is tracked using a level-set method that is modified to include the effect of contact angle hysteresis at the wall. The species transport equation including a thermal diffusion term is additionaly solved to determine the nanoparticle distribution in the droplet. The effect of nanoparticle concentration and contact angle are also studied.

Reliability Evaluation of Aircraft Brake Disk using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상 기법을 이용한 항공기 브레이크 디스크의 신뢰성 평가)

  • Kwak, Nam-Su;Kim, Jae-Yeol;Gao, Jia-Chen;Park, Dae-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.36-43
    • /
    • 2016
  • Carbon fiber-reinforced silicon carbide (Cf-SiC) and SiC / SiC composites have high thermal conductivity, and excellent corrosion and wear resistance, a low coefficient for thermal expansion and are lightweight. This is why they are commonly used in parts of the aerospace industry to develop an aircraft thrust deflector, jet vane, combustion chamber, elevens, body flap, and a shingle. So, understanding how this state-of-the-art Cf-SiC affects both internal and external crack detection and determining issues during the manufacturing process of composite materials, should be evaluated according to valuation techniques in the external environment. In this paper, we apply a non-contact air ultrasonic technique of non-destructive testing techniques to perform a study on internal defect detection identification and assessment of carbon-fiber reinforced silicon carbide composites to perform basic research and applied research.

Silicone Injection Mold & Molding Technology for Super-hydrophobic Curved Surface (초발수 곡면표면 실리콘 사출금형성형기술)

  • Lee, Sung-Hee;Kang, Jeong-Jin;Lee, Jong-Won;Hong, Seok-Kwan;Ko, Jong-Soo;Lee, Jae-Hoon;Noh, Ji-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • In this study, silicone injection molding technology with curved thermoplastic insert was developed to produce super-hydrophobic surface. Thermoplastic insert part and injection mold design of base plastic cover were performed to produce cost effective hydrophobic surface part. An optimization process of part thickness for thermoplastic insert part was performed with transient thermal analysis under silicone over-molding process condition. Structural thermal analysis of silicone injection mold was also performed to obtain uniform temperature condition on the surface of micro-patterned mold core. Super-hydrophobic surface for the silicone injection molded part with thermoplastic insert could be verified from the measurement of contact angle. It was shown that the averaged contact angle was over $140^{\circ}$.

Sulfonation of Polyamide Containing Carboxylic Acid (Carboxylic acid를 함유한 sulfonated polynmide의 제조)

  • Jeon, Jong-Young;Lee, Gi-Jo
    • Journal of Sericultural and Entomological Science
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Polyamide containing carboxylic acid was sulfonated with chlorosulfonic acid in dichloroethane under various conditions. The impact of the sulfonating agent concentration, the reaction temperature, and the reaction time on the ion exchange capacity was investigated. The mechanical and thermal properties, the contact angle, and the change of poly-dispersity were calculated for studying change of their properties. The reactions were effective, when the temperature was below $10^{\circ}C$ and the concentration of chlorosulfonic acid was below 0.05 mol. The value of ion exchange capacity was increased with reaction time. Thermal and mechanical properties were nearly unchanged according to the degree of sulfonation, but the contact angle was increased with increasing the value of ion exchange capacity.

A Study on Temperature Field and Contact Pressure in Ventilated Disc-Pad Brake by 3D Thermo-mechanical Coupling Model (3차원 열-기계 커플링 모델에 의한 벤틸레이티드 디스크-패드 브레이크의 온도 분포와 접촉 압력에 관한 연구)

  • Hwang, Pyung;Seo, Hee-Chang;Wu, Xuan
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.421-426
    • /
    • 2009
  • The brake system is important part of automobile safety system. The disc brake system is divided two parts: the rotating axisymmetrical disc and the stationary pads. During braking, the kinetic energy and potential energy of moving vehicle were converted into the thermal energy through frictional heat between the brake disc and the pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperature during the braking process. The object of present work is to determine temperature and thermal stress, to compare to simulation results and experimental results in the disc by partial 3D model of ventilated disc brake with appropriate boundary conditions. In the simulation process, the mechanical loads were applied to the thermo-mechanical coupling analysis in order to simulate the process of heat produced by friction.