• Title/Summary/Keyword: thermal contact

Search Result 1,210, Processing Time 0.028 seconds

3D Dimensional Finite Element Analysis of Contact Stress of Gold Screws in Implant Partial Denture (임플란트 국소의치 금나사의 3차원 유한요소법 접촉응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.303-312
    • /
    • 2013
  • Purpose: In this research, non-linear three dimensional finite element models with contact elements were constructed. For the investigations of the distributions of contact stresses, 3 units fixed partial dentures model were studied, especially on the interface of the gold screw and cylinder, abutment screw. Methods: 3 types of models were constructed ; the basic fixed partial denture in molar region with 3 units and 3 implants, the intermediate pontic fixed partial denture model with 3 units and 2 implants, and the extension pontic fixed partial denture model with 3 units and 2 implants. For all types, the external loading due to chewing was simulated by applying $45^{\circ}$ linguo-buccal loading of 300 N to the medial crown. For the simulation of the clamping force which clinically occurs due to the torque, thermal expansion was provided to the cylinder as a preload. Results: Under 300 N concentrated loading to the medial crown, the maximum contact stress between abutment screw and gold screw was 86.85~175.86MPa without preload, while the maximum contact stress on the same area was 25.59~57.84MPa with preload. Conclusion: The preloading affected the outcomes of the finite element stress analysis. Reflecting the clinical conditions, the preloading conditions should be considered for other practical study utilizing FEA. For the study of the contact stresses and related motions, various conditions, such as frictional coefficient changes, gap between contact surfaces, were also varied and analyzed.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

A Study on Thermal and Mechanical Interfacial Properties of Difunctional Epoxy/PMMA Blends (이관능성 에폭시/폴리메틸메타크릴레이트 블랜드의 열적 및 기계적 계면 특성)

  • 박수진;김기석;이재락;민병각;김영근
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.10-17
    • /
    • 2004
  • In this work, the blend system prepared from epoky(DGEBA)/polymethylmethacrylate(PMMA) was investigated in thermal and mechanical interfacial property measurements. The thermal properties were carried out by DSC, DMA, and TGA measurements. Also, the surface free energy and fracture toughness were determined by contact angle and critical stress intensity factor($K_{IC}$), respectively. And the fracture surface was observed by SEM after $K_{IC}$ tests. As experimental results, the curing temperature and glass transition temperature were slightly increased in addition of PMMA. Surface free energy of the blends showed an improved value at low contents of PMMA which could be attributed to the both increasings of London dispersive and polar components. From measurement of $K_{IC}$ of the blends, the highest value was found at 5 phr. This was due to the increasing of compatibility or physical interaction in macromolecular chains between DGEBA and PMMA of the blends.

Influence of Thermal Aging on the Properties of EPDM/Silicone Rubber Blends (열노화가 EPDM/실리콘 고무 블렌드의 물성에 미치는 영향)

  • Chung Yu-Kyoung;Lee Sung-Goo;Cho Bong Rae;Choi Kil-Yeong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.166-171
    • /
    • 2005
  • EPDM (ethylene propylene diene monomer)/silicone rubber blends were prepared and the influence of a compatibilizer and thermal aging on the properties of the blends was investigated. The blends of which the compositions were varied in the range of 90/10 through $10/90\;wt\%$ were melt mixed by using a Brabender Plasticoder (internal mixer) and were vulcanized by a hot press. The morphology of the vulcanized EPDM/SR blends was examined by scanning electron microscopy (SEM). After the thermal Aging for 24, 48, 96 hrs at $100^{\circ}C$ in an air oven, hardness, tensile strength, elongation and contact angle of the blends were investigated. From the result of the morphology, it was confirmed that the domain size of the blends containing the compatibilizer was reduced. As the increase of the thermal aging time, hardness and tensile strength of the blends decreased but elongation and contact angle increased.

An Experimental Study on the Thermal Characteristics of Direct Contact Liquid-Ice Heat Exchanger (직접접촉식 액-빙 열교환기의 전열특성에 관한 실험적 연구)

  • Lee, Chae-Moon;Park, Jung-Won;Kim, Dong-Hun
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.65-77
    • /
    • 1996
  • The operating thermal chracteristics of direct contact liquid-ice heat exchanger was experimentally investigated. In this paper, The effects of Ice Packing Factor(IPF), the inlet temperature and the flow rate of Heat Transfer Fluid(HTF) were stuided in the liquid-ice heat exchanger. Thermal stratification in liquid-ice heat exchanger was established clearly and faster at the higher inlet temperature and flow rate of HTF. At the end of melting of the lower flow rate is cleared the thermal stratification in liquid-ice heat exchanger. The temperature stratification is long with higher value of IPF of liquid-ice heat exchanger. The mean temperature of liquid-ice storage was changed rapidly with increasing flow rate and inlet temperature of HTF. The gradiant of ratio of total energy to latent energy was found higher with increasing inlet temperature and flow rate.

  • PDF

Preparation and Characterization of Pitch-based Carbon Paper for Low Energy and High Efficiency Surface Heating Elements (저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성)

  • Yang, Jae-Yeon;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.412-420
    • /
    • 2018
  • In this work, phenolic resins containing conductive carbon fillers, such as, petroleum coke, carbon black, and graphite, were used to improve the surface heating elements by impregnating a pitch-based carbon paper. The influence of conductive carbon fillers on physicochemical properties of the carbon paper was investigated through electrical resistance measurement and thermal analysis. As a result, the surface resistance and interfacial contact resistivity of the carbon paper were decreased linearly by impregnating the carbon fillers with phenol resins. The increase of carbon filler contents led to the improvement of electrical and thermal conductivity of the carbon paper. Also, the heating characteristics of the surface heating element were examined through the applied voltage of 1~5 V. With the applied voltage, it was confirmed that the surface heating element exhibited a maximum heating characteristic of about $125.01^{\circ}C$(5 V). These results were attributed to the formation of electrical networks by filled micropore between the carbon fibers, which led to the improvement of electrical and thermal properties of the carbon paper.

The Measurement Method of Thermal Conductivity and Diffusivity of Thin Paint Layer Sprayed on Solid Surface (고체표면에 도포한 도료 박막의 열전도율과 열확산율의 측정법)

  • Kim, Eun-young;Park, Soo-Chun;Kim, Byung-Mun;Lee, Doug-Bong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.311-319
    • /
    • 1999
  • The thermal conductivity ${\lambda}_b$, thermal diffusivity ${\alpha}_b$ of the thin black paint layer sprayed on solid surface and absorptivity a for laser beam are measured by applying a non-contact measurement method of the thermophysical properties of solids. The values of a=0.67, ${\lambda}_b=1.45W/mK$ and ${\alpha}_b=1.24{\times}10^{-6}m^2/s$ are obtained for the sprayed lay~ thickness $z_b{\fallingdotseq}40\;{\mu}m$. Furthermore, for the $z_b{\fallingdotseq}24\;{\mu}m$ thick layers which arc formed by rubbing with a glass rod after spraying, the values of a=0.73, ${\lambda}_b=1.85W/mK$. and ${\alpha}_b=1.09{\times}10^{-6}m^2/s$ are obtained. It is also shown that the present thermal diffusivity ${\alpha}_b$ for $z_b{\fallingdotseq}40\;{\mu}m$ Is about 30~80% larger than those obtained by Araki et al. for the thicker layer $z_b{\fallingdotseq}150{\sim}248\;{\mu}m$. This method could be applied to the measurement of thermophysical properties of thin layer on solids.

Analysis for Thermal Effect by an Unheated Housing Unit in Apartment (공동주택에서 비난방세대가 미치는 열적 영향)

  • Lee, Eun-Ju;Koo, Junemo;Hong, Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2016
  • Adjacent housing units suffer inevitable thermal losses if an unheated unit exists in an apartment building. Thermal loss of the units adjoining the unheated apartment can be neglected because the contact area is small and insulators are located in the walls. When insulators are not included in the slab between the upper and lower units, 70% of the heat supplied by an Ondol system may be used in the original unit, but 30% is transferred to the unit on the lower floor. Another 30% can be obtained from the ceiling if the upper floor housing unit is heated. This strong thermal connection is a characteristic of Ondol heating in apartment buildings. When there is an unheated unit, the lower floor unit uses 42.3% more heating energy if there is no insulation and 19.5% if a 35 mm insulator is used as in the current guidelines. Therefore, much thicker insulation should be applied to weaken the thermal connection.

A Study on the Thermal Characteristics of a High Speed Spindle according to the Cooling Existence of Rear Part and the Cooling Conditions (고속주축의 냉각조건과 후반부 냉각 유무에 따른 열특성 연구)

  • Choi, Dae-Bong;Kim, Soo-Tae;Lee, Seog-Jun;Kim, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 2012
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and bearing. This paper presents the thermal characteristic analysis for a high speed spindle with and without cooling at the rear part, considering the viscosity and the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil jacket cooling and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. This result can be applied to the design and manufacture of a high speed motor spindle.

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF