• Title/Summary/Keyword: thermal conditions

Search Result 4,621, Processing Time 0.047 seconds

Prediction of Blooming Dates of Spring Flowers by Using Digital Temperature Forecasts and Phenology Models (동네예보와 생물계절모형을 이용한 봄꽃개화일 예측)

  • Kim, Jin-Hee;Lee, Eun-Jung;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.40-49
    • /
    • 2013
  • Current service system of the Korea Meteorological Administration (KMA) for blooming date forecasting in spring depends on regression equations derived from long term observations in both temperature and phenology at a given station. This regression based system does not allow a timely correction or update of forecasts that are highly sensitive to fluctuating weather conditions. Furthermore, the system cannot afford plant responses to climate extremes which were not observed before. Most of all, this method may not be applicable to locations other than that which the regression equations were derived from. This note suggests a way to replace the location restricted regression equations with a thermal time based phenology model to complement the KMA blooming forecast system. Necessary parameters such as reference temperature, chilling requirement and heating requirement were derived from phenology data for forsythia, azaleas and Japanese cherry at 29 KMA stations for the 1951-1980 period to optimize spring phenology prediction model for each species. Best fit models for each species were used to predict blooming dates and the results were compared with the observed dates to produce a correction grid across the whole nation. The models were driven by the KMA's daily temperature data at a 5km grid spacing and subsequently adjusted by the correction grid to produce the blooming date maps. Validation with the 1971-2012 period data showed the RMSE of 2-3 days for Japanese cherry, showing a feasibility of operational service; whereas higher RMSE values were observed with forsythia and azaleas.

Photolysis of a New Insecticide KH-502 [O,O-diethyl O-(1-phenyl-3- trifluoromethyl-5-pyrazolyn) thiophosphoric acid ester] (신규(新規) 살충제(殺蟲劑)인 KH-502 [O,O-Diethyl O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl) thiophosphoric acid ester]의 광(光)에 의한 분해성(分解性))

  • Cho, Boo-Yeon;Han, Dae-Sung;Yang, Jae-E
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.176-183
    • /
    • 1993
  • Photolysis experiments were conducted to investigate the stability of a new insecticide, [O,O-Diethyl O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl) thiophosphoric acid ester: KH-502] under the various conditions. In the photolysis experiment, KH-502 was, after being added into the acetone or acetonitrile solution, irradiated under the sunlight or UV lamp $(300{\sim}350nm)$, where acetone or acetonitrile solution was varied with water and $O_2$contents and was treated with humic acid, rosebengal or tryptophan. Results for stability and degradation pattern of KH-502 from the above experiment can be summarized as follows: 1. The significant difference in KH-502 decomposition due to photolysis was shown for between KH-502s irradiated at $300{\sim}350$ nm and non-irradiated. KH-502 was photolyzed in the acetone by the sensitizing effect, but was stable in the acetonitrile. 2. The degradation pattern of KH-502 in the photolysis was different as compared to that in the thermal decomposition, and the decomposed products were O,O-Diethyl O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl)phosphoric acid ester (KH-502 oxo form), O,S-Diethyl O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl)phosphorothiolate(S-ethyl KH-502), 1-Phenyl-3-trifluoromethyl-5-hydroxy pyrazole (PTMHP) and several unknown compounds. 3. Treatments of acetone or acetonitrile solution with humic acid, rosebengal or tryptophan revealed no-sensitizing effect on the photolysis of KH-502. Dissolved oxygen in the acetone played as a cosensitizer with acetone competitively to enhance the photolysis of KH-502. 4. Treatments of acetone with humic acid or paddy soil water collected from fields decreased the photolysis of KH-502.

  • PDF

Development of Smart Switchgear for Versatile Ventilation Garments: Optimum Diameter and Voltage Application Unit Time of One-way Shape Memory Alloy Wire for a Bi-directional Actuator (가변 통기성 의복을 위한 스마트 개폐장치 개발: 양방향 작동 액추에이터 제작을 위한 일방향 형상기억합금 와이어의 최적 직경 및 전압인가 단위시간의 도출)

  • Kim, Sanggu;Kim, Minsung;Yoo, Shinjung
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2018
  • The study figured out the operational conditions of a two-way movement actuator made of one-way shape memory alloy (OWSMA) for versatile ventilation intelligent garments. To develop a low-power actuator that consumes energy only when a garment changes its form such as opening and closing, multiple channels of OWSMA were used, and optimum diameter of the wires was examined. For the switch device, optimum voltage application unit time was determined. Optimum diameter of OWSMA wire was determined by applying 3.7V to the pre-determined candidate diameters, which demonstrated two-way operation in previous studies. In order to evaluate the optimum voltage application time, the internal diameter of the actuator was measured while increasing and decreasing by 50 ms from the unit time of voltage application. Delay time under two-way operation of the actuator was measured to minimize interference caused by heat between channels. Power of 3.7V was applied to OWSMA for assessment of optimal time, and the whole process from heating to cooling was video-recorded with a thermal image camera to determine the point of time at which the temperature of OWSMA wire dropped below the phase transformation temperature. The results showed that $0.4{\Phi}$ was the most suitable diameter, and the optimum unit time of voltage applied to open and close the actuator was 4100ms. It was also shown that the delay time should be more than 1.8 seconds between two-way operations of the actuator.

Separatipon of Oryzanol from the Refining By-Product of Rice Bran Oil (미강유 정제 부산물로부터 오리자놀 분리)

  • Kim, In-Hwan;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.76-80
    • /
    • 1991
  • To isolate oryzanol from the by-product of rice bran oil refinning, experiment of solvent fractional crystallization was carried out at various conditions with the dark oil obtained by acidifying the soap stock of micella refinning process and the pitch obtained from vacuum distillation of the dark oil. The impurity interfering the crystallization process such as waxes can be removed as precipitates by cooling the 1:1 mixtrue of acetone and dark oil to $0^{\circ}C$, From the dewaxed dark oil, oryzanol concentrate with 51.3% purity was obtained by fractional crystallization at$0^{\circ}C$ with the mixture of 8 part volume of hexane and 1 part of the dewaxed dark oil. The concentrate was recrystallized at room temperature with 20 part volume of methanol to yield oryzanol crystal of 98.3% purity. The optimum condition of vacuum distillation was temperature of $180^{\circ}C\;at\;0.2{\sim}0.4\;torr$ with 2% steam sparging. At this condition, the free fatty acid in the dark oil was removed as distillate without thermal deomposition to yield 82.3% of oryzanol as the pitch of 27.3% purity. After concentration from the pitch with 20 part volume of hexane to yield yellow powder of 75.4% purity, the yellow powder was recrystallized in methanol at room temperature to obtain the crystal containing 99.0% oryzanol. The overall oryzanol yield from the dark oil and the pitch was 9.5 and 28.5%, respectively. The change of the composition of sterols and triterpenoid alcohols in the compounds isolated during fractionation was analyzed by GC-MS.

  • PDF

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

Study on Performance of Vertical-axis Tidal Turbines Applied to the Discharged Channel of Power Plant (조류발전용 수직축 터빈의 방수로 설치에 따른 성능에 관한 연구)

  • Lee, Jeong-Ki;Hyun, Beom-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.274-281
    • /
    • 2015
  • Thermal and nuclear power plants on shore commonly use the sea water for cooling facility. Discharged cooling water has the high kinematic energy potential due to amount of water flux. Numerical analysis was made to find the suitable combinations between the arrangement of tidal turbines and the overall dimensions of the discharged channel. Several parameters such as the turbine diameter to inlet size, and the axial distance to turbine size were investigated. Power coefficients for various test conditions were also compared to see the effect of inlet configurations such as single inlet and dual inlet. For the single inlet, the mean power coefficient appeared to be gradually decreased with increasing distance, and the maximum power was obtained when the turbine diameter was same as the inlet diameter. For the dual inlet, the tendency was similar so that the better result when the turbine diameter was same as the inlet diameter. It is expected that the present methodology can be extensively utilized to harness the high kinetic energy flow of the discharge channel of power plant.

Design and Performance Analysis of Conical Solar Concentrator

  • Na, Mun Soo;Hwang, Joon Yeal;Hwang, Seong Geun;Lee, Joo Hee;Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Purpose: The objective of this study is to evaluate the performance of the conical solar concentrator (CSC) system, whose design is focused on increasing its collecting efficiency by determining the optimal conical angle through a theoretical study. Methods: The design and thermal performance analysis of a solar concentrator system based on a $45^{\circ}$ conical concentrator were conducted utilizing different mass flow rates. For an accurate comparison of these flow rates, three equivalent systems were tested under the same operating conditions, such as the incident direct solar radiation, and ambient and inlet temperatures. In order to minimize heat loss, the optimal double tube absorber length was selected by considering the law of reflection. A series of experiments utilizing water as operating fluid and two-axis solar tracking systems were performed under a clear or cloudless sky. Results: The analysis results of the CSC system according to varying mass flow rates showed that the collecting efficiency tended to increase as the flow rate increased. However, the collecting efficiency decreased as the flow rate increased beyond the optimal value. In order to optimize the collecting efficiency, the conical angle, which is a design factor of CSC, was selected to be $45^{\circ}$ because its use theoretically yielded a low heat loss. The collecting efficiency was observed to be lowest at 0.03 kg/s and highest at 0.06 kg/s. All efficiencies were reduced over time because of variations in ambient and inlet temperatures throughout the day. The maximum efficiency calculated at an optimum flow rate of 0.06 kg/s was 85%, which is higher than those of the other flow rates. Conclusions: It was reasonable to set the conical angle and mass flow rate to achieve the maximum CSC system efficiency in this study at $45^{\circ}$ and 0.06 kg/s, respectively.

The Shelf-life of Agricultural Organic Materials Containing Cinnamon or Derris Extract: Thermal Stability of Cinnamyl Derivatives and Rotenoids (계피 또는 데리스 추출물을 주원료로 하는 유기농업자재의 약효 성분 안정성)

  • Choi, Geun-Hyoung;Jin, Cho-Long;Park, Byung-Jun;Lim, Sung-Jin;Rho, Jin-Ho;Moon, Byung-Cheol;Kong, Seung-Heon;Kim, Jin Hyo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.197-202
    • /
    • 2016
  • The stabilities of bioactive compounds in cinnamon or derris extract were investigated in commercial agricultural organic materials (biopesticide) during storage on different temperature conditions ($0^{\circ}C$, $23^{\circ}C$, $35^{\circ}C$, $45^{\circ}C$, and $54^{\circ}C$). The selected bioactive compounds were cinnamaldehyde, and cinnamyl alchol in cinnamon extract and deguelin, and rotenone in derris extract. Half-lives of the total cinnamyl derivatives in biopesticide (A, B, C, and D) ranged from 15.1 to 46.2 days on the different temperature and cinnamaldehyde was more stable than cinnamyl alcohol in the biopesticide. The half-lives of total rotenoid ranged from 1.7 to 173 days on the different temperature in the tested biopesticide (E, F, and G) containing derris extract. The stabilities of deguelin, and rotenon in the biopesticide showed similar values in the same condition.

Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM (FEM을 이용한 왕복동 공기압축기의 피스톤 및 커넥팅로드의 구조해석)

  • Pham, Minh-Ngoc;Yang, Chang-Jo;Kim, Jun-Ho;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • In a reciprocating compressor, the piston and connecting rod are important parts. Excess mechanical stress on these parts may cause damage, and broken parts are expensive and difficult to replace. Therefore, it is necessary to analyze the mechanical stress affecting durability and longevity. The main purpose of this study was to identify locations of maximum stress on pistons and connecting rods. Based on dynamic calculation of the working process of a specific air compressor, an analysis of piston and connecting rod performance has been completed. A three-dimensional model for the air compressor's pistons and connecting rods was built separately, and FEM analysis of these components was carried out using a numerical method. The pistons were loaded by pressure which was changed according to crankshaft angle without thermal boundary conditions. The simulation results were used to predict and estimate stress concentration as well as the value of this stress on pistons and connecting rods. The maximum equivalent stress calculated are over 190 MPa on pistons and 123 MPa on connecting rods at crank angle $135^{\circ}$ and $225^{\circ}$ but these are under tensile yield strength. Besides, the calculated safety factors of connecting rods and pistons is higher than 1. Moreover, the results obtained can be used to provide manufacturers with references to optimize the design of pistons and connecting rods for reciprocating compressors.

The Inhibitory Effect of Cornus walteri Extract Against ${\alpha}-amylase$ (말채나무 추출물의 ${\alpha}-amylase$ 저해 활성)

  • Lim, Chae-Sung;Li, Chun-Ying;Kim, Yong-Mu;Lee, Wi-Young;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.103-108
    • /
    • 2005
  • ${\alpha}-Amylase$ inhibitor is used to control blood glucose level by inhibiting starch digestion in the small intestine and delaying the absorption of glucose. In this study, we investigated the effect of the ethanol extracts from more than 1400 species of plants against ${\alpha}-amylase$ with the aim of developing a new ${\alpha}-amylase$ inhibitor. In the results, Cornus walteri extracts showed the highest inhibition activity. The inhibitory effect of Cornus walteri extract on the carbohydrate hydrolysis enzymes has different sensitivities against ${\alpha}-amylase$ from salivary and pancreatin and against ${\alpha}-glucosidase$ from yeast and porcine small intestine. In the study of inhibition kinetics of ${\alpha}-amylase$ and ${\alpha}-glucosidase$, Cornus walteri extract showed competitive inhibition against salivary and pancreatin while showing the combination of uncompetitive and noncompetitive inhibition against ${\alpha}-glucosidase$. The Cornus walteri extract was stable at acidic and thermal conditions. As for the blood glucose and body weight levels of Cornus walteri extract, we confirmed anti-hyperglycemic and anti-obesity effects. Also, in the investigation of the mRNA lever, Cornus walteri extract upregulated the level of GLUT4 mRNA in the quadriceps muscle.