• Title/Summary/Keyword: thermal conditions

Search Result 4,621, Processing Time 0.035 seconds

A Study on the Room Temperature Control Methods Considering Human Thermal Comfort Under Hot and Humid Condition (인체의 온열환경 적응을 고려한 여름철의 실온 쾌적변동 제어에 관한 연구)

  • Lee, Ju-Youn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.5
    • /
    • pp.334-341
    • /
    • 2008
  • The purpose of this study is to investigate the effects of changing air temperature and the changing on/off periods of the air-conditioner system. Adding to that, this paper discuss is to consider the effects of air temperature with the air-conditioner system upon the human thermal comfort. The experiment is conducted during the summer. The subjects(6 young females) are exposed to the following conditions: combinations of 2 Swing and 2 Linear air control Conditions. (2 Swing during 40 min, 4 Swing during 40 min, Linear 40 min, Linear 60 min in still air and RH 50%). From the experiment, the following results are obtained; the thermal sensation vote is neutral after 90 minute. The mean skin temperature ranged about $34^{\circ}C$ at all conditions. The skin temperature was greatly affected by 2 Swing big amplitude condition.

Determination of the Temperature Coefficient of the Constitutive Equation using the Response-Surface Method to Predict the Cutting Force (반응표면법을 이용한 구성방정식의 온도계수 결정과 절삭력 예측)

  • Ku, Byeung-Mun;Kim, Tae-Ho;Park, Jung-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.9-18
    • /
    • 2021
  • The cutting force in a cutting simulation is determined by the cutting conditions, such as cutting speed, feed rate, and depth of cut. The cutting force changes, depending on the material and cutting conditions, and is affected by the heat generated during cutting. The physical properties for predicting the cutting force use constitutive equations as functions of the hardening term, rate-hardening term, and thermal-softening term. To accurately predict the thermal properties, it is necessary to accurately predict the thermal-softening coefficient. In this study, the thermal-softening coefficient was determined, and the cutting force was predicted, using the response-surface method with the cutting conditions and the thermal-softening coefficient as factors.

Gender Difference of Self-health Image and Actual Wearing Conditions in University Students (성별에 따른 대학생의 자기 건강 이미지와 착의 실태 차이)

  • Chung, Ihn Hee;Kweon, Soo Ae;Lee, Yun Jung;Lee, Joo-Young;Jeong, Woon Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.1
    • /
    • pp.64-75
    • /
    • 2013
  • This study suggests basic data on optimum thermal insulation for spring wear through an investigation of subjective thermal sensation, self-health image and actual wearing conditions. A survey of university students using a self-administered questionnaire was conducted to collect data on subjective thermal sensation, self-health image, wearing conditions, demographics and physical characteristics. The variable of wearing conditions was measured as the response to the clothing they were wearing. Garment items (26 types for males and 41 types for females) were suggested and the items worn by the students were converted into the thermal insulation values for clothing. The main results are as follows. As for the body type perception, males perceived themselves as not fat while females perceived themselves as not thin. As for the health perception, males perceived themselves healthier than females. As for the climate adaptability perception, females were more sensitive to cold than males. The average thermal insulation of clothing was 0.97clo (0.34-1.95clo) with higher insulation for males than females. Students were more sensitive to the cold when their BMI was lower, their body surface area per body weight was larger, and the more they perceived themselves as not healthy. There was a significant correlation between the self-health image of sensitiveness to cold and the thermal insulation of clothing. The results were synthetically discussed in terms of environmental physiology.

A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell (고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Jeon, Kwang-Sun;Shin, Dong-Ryul;Kang, Thae-Khapp
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

A Study on Boundary Conditions of Piston Thermal Loading Analysis in Internal Combustion Engines (내연기관 피스톤의 열부하 해석을 위한 경제조건 설정에 관한 연구)

  • 정동수;조용석;최헌오;이진형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.528-533
    • /
    • 1988
  • The assignment of boundary conditions for the piston thermal loading analysis in internal combustion engine has been tested using the thermal circuit method with an engine simulation program. In an attempt to examine the accuracy of the employed boundary condition, another thermal boundary condition has been sought for through the electrolytic tank analogue method. Comparison of calculated temperature distributions obtained from these two boundary conditions with measured temperature values reveals that the electrolytic tank analogue method gives excellent agreement. However, the thermal circuit method has been found to be reasonable for practical applications, if modified partially.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

On-site Performance Test and Simulation of a 10 RT Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, on-site performance test of an air source heat pump which has a rated capacity of 10 RT is carried out. Since indoor and outdoor air conditions can not be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance of the heat pump for other conditions, the heat pump is modeled with a small number of characteristic parameters. The values of the parameters are determined from the few measurements measured on-site during steady operation. A simulation program is developed to calculate cooling capacity and power consumption at any other arbitrary operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.

Characteristics Analysis and Compensation of Thermal Deformation for Machine Tools with respect to Operating Conditions (작업조건에 따른 공작기계의 열변형 특성 해석 보정)

  • 이재종;최대봉;박현구;곽성조
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.70-75
    • /
    • 2001
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindel unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball arti-fact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

Optimal Design for Indoor Thermal Environment based on CFD Simulation and Genetic Algorithms (CFD 연성해석과 유전자 알고리즘을 이용한 실내 열환경 최적설계에 관한 연구)

  • 김태연;이윤규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • The optimal design method of indoor thermal environment using CFD coupled simulation and genetic algorithms (GA) is developed in this study. CFD could analyze the thermal environment considering the distribution of temperature, velocity, etc. in a room. Therefore, It would be appropriate to use CFD for the optimal design method considering their distribution. In this paper, the optimal design means the most appropriate boundary conditions of the room among the conditions where the design target of indoor therm environment is achieved. Two step optimal indoor thermal environment design method is proposed. It includes the GA for searching the optimal indoor thermal environment design. To examine the performance of this method, the optimal design of hybrid ventilation system, which uses the natural cross ventilation and the radiation-cooling panel is conducted. The optimal design which satisfies the design target (thermal comfort, minimum cooling load, minimum vertical temperature difference) is found using two step optimal design method.

An Ananlysis on the Clothing Pracices between Seoul and yanbian -Focusing on the clothing weight- (서울.연변간 착의실태 조사분석 -착의량을 중심으로-)

  • Oh, Soon;Lee, Won-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.7
    • /
    • pp.1019-1029
    • /
    • 1999
  • In order to find out the influences upon not only the thermal resistance of human body but also the clothing action and the clothing weight which are caused by the differences in the thermal living conditions by using air conditioner and so on to adapt themselves to the changes of their residential environment according to the changes of seasons we investigated the clothing practices upon the male and female students in Seoul and Korean male and female students in Yanbian who are estimated to have different thermal living conditions in spite that they are same folk as well as living in the same age. 1. The total clothing weight of body surface erea was increased in order of summer autumn spring and winter seasons and by seasons the changes of the clothing weight were found in both areas, In Seoul the changes of upper outwear clothing weight were found on both sexes but in Yanbian the changes of underwear weight were found on both sexes. And the underwear weight of both sexes in Seoul was lighter than that of both sexes in Yanbian. 2. Those in Seoul tended to fell colder in winter and hotter in summer than those in Yanbian on account that the formers are more sensitive of thermal conditions than the latters. 3. Comparing clo-value claculated by the fomula of with the Winshlow's clo-value those in Yanbian had higher thermal resistance than those in Seoul. Consequently those in Seoul adapted thermselves to the seasons by controling the upper outwear weight but those in Yanbian did it with underwear weight, The male and female students in Seoul tended to feel colder in winter and hotter in summer than hose in Yanbian because the thermal sense of the former is more sensitive than that of the latter.

  • PDF