• Title/Summary/Keyword: thermal bridge

Search Result 297, Processing Time 0.025 seconds

The Electrical Characterization of the Quantized Hall Device with GaAs/AlGaAs heterojunction structure (GaAs/AlGaAs 이종접합된 양자흘 소자의 전기적 특성)

  • 유광민;류제천;한권수;서경철;임국형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.334-337
    • /
    • 2002
  • The Quantum Hall Resistance(QHR) device which consists of GaAs/AlGaAs heterojunction structure is used for the realization of QHR Standard based on QHE. In order to characterize electrical contact resistances and dissipations of the device, it is slowly cooled down for eliminating thermal shock and unwanted noise. Then, the two properties are measured under 1.5 K and 5.15 T. Contact resistances are all within 1.2 Ω and longitudinal resistivities are all within 1 mΩ up to DC 90${\mu}$A. The results mean the device is operated well to realize the QHR Standard. To confirm it, the QHR Standard having the device is compared using a direct current comparator bridge with a 1 Ω resistance standard which the calibrated value is known from QHR standards maintained by other countries. The difference between them is agreed well within measurement uncertainty. It is thus considered that the properties of the device is estimated well and has good performance.

  • PDF

Design of a 2kW Bidirectional Synchronous DC-DC Converter for Battery Energy Storage System (배터리 에너지 저장장치용 고효율 2kW급 양방향 DC-DC 컨버터 설계)

  • Lee, Taeyeong;Cho, Byung-Geuk;Cho, Younghoon;Hong, Chanook;Lee, Han-Sol;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.312-323
    • /
    • 2017
  • This paper introduces the bidirectional dc-dc converter design case study, which employs silicon-carbide (SiC) MOSFETs for battery energy storage system (BESS). This converter topology is selected as bidirectional synchronous buck converter, which is composed of a half bridge converter, an inductor, and a capacitor, where the converter has less conduction loss than that of a unidirectional buck and boost converter, and to improve the converter efficiency, both the power stage design and power conversion architecture are described in detail. The conduction and switching losses are compared among three different SiC devices in this paper. In addition, the thermal analysis using Maxwell software of each switching device supports the loss analyses, in which both the 2 kW prototype analyses and experimental results show very good agreement.

Case Study for Buckling Design of Temporary Bridges using System Buckling Analysis (시스템좌굴 해석법을 이용한 라멘형가교 주요부재의 좌굴설계에 관한 사례 연구)

  • Kyung, Yong Soo;So, Byoung Hoon;Bang, Jin Hwan;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2007
  • Generally, main girders and steel piers of temporary bridges form the steel rahmen structure. In this study, the rational stability design procedure for main members of temporary bridges was presented using a 3D system buckling analysis and second-order elastic analysis. Six types of temporary bridges, which can be designed and fabricated in reality, were chosen and the buckling design for them was performed in consideration ofload combinations of dead and live loads, thermal load, and wind load. Effective buckling length of steel piers, transition of 3D buckling modes, and effects of second-order analysis were investigated through a case study involving six temporary bridges.

Analysis of Residual Stresses in Weldede joints of SM570-TMC Steel (SM570-TMC 강 용접접합부의 잔류응력 해석)

  • Park, Hyeon-Chan;Lee, Jin-Hyeong;Lee, Jin-Hui;Jang, Gyeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.79-81
    • /
    • 2005
  • Bridges constructed recently are preferred to have long spans and simple structure details considering not only the function as bridge but scenic beauty, maintenance, construction term and life cycle cost, etc. Therefore, they require high performance steels like extra-thick plate steels and TMCP steels. A TMCP steel produced by themo-mechanical control process is now spot lighted due to the weldability for less carbon equivalent. It improved at strength and toughness in microstructure. Recently, the SM570-TMC steel which is a high strength TMCP steel whose tensile strength is 600MPa has been developed and applied to steel structures. But, for the application of this steel to steel structures, it is necessary to elucidate not only the material characteristics but also the mechanical characteristic of welded joints. In this study, the characteristics of residual stresses in welded joints of SM570-TMC steel were studied through the three-dimensional thermal elastic-plastic analyses on the basis of mechanical properties at high temperatures obtained from the elevated temperature tensile test.

  • PDF

The Effect on the Dielectric Characteristics of Transformer Oils due to the High Dose Electron Beam (변압기유의 유전특성에 미치는 고조사 전자선의 영향)

  • Cho, Kyung-Soon;Kim, Lee-Doo;Kim, Suk-Wan;Kim, Wang-Kon;So, Byung-Moon;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1417-1419
    • /
    • 1997
  • In this paper, the dielectric properties is made researches by the dose of electron beam in order to investigate the electrical properties for transformer oils due to electron beam irradiation. To measure the dielectric loss of irradiated specimen, the liquid electrode of coaxial cylindrical shape is used, and its geometric capacitance is 16 [pF]. And the dielectric dissipation factor, $tan{\delta}$, is measured by using the Video Bridge 2150. The thermal static oven with an automatic temperature controller is used so as to apply specific temperature to specimen. This experiments for measuring the dielectric loss is performed at $20{\sim}120[^{\circ}C]$ in temperature range, $30{\sim}1.5{\times}10^5[Hz]$ in frequency and $300{\sim}500[mV]$ in voltage.

  • PDF

High Frequency and High Luminance AC-PDP Sustaining Driver

  • Choi Seong-Wook;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • Plasma display panels (PDPs) have a serious thermal problem, because the luminance efficiency of a conventional PDP is about 1.5 1m/W and it is less than $3\~5\;lm/W$ of a cathode ray tube (CRT). Thus there is a need for improving the luminance efficiency of the PDP. There are several approaches to improve the luminance efficiency of the PDP and we adopted a driving PDP at high frequency range from 400kHz up to over 700kHz. Since a PDP is regarded as an equivalent inherent capacitance, many types of sustaining drivers have been proposed and widely used to recover the energy stored in the PDP. However, these circuits have some drawbacks for driving PDPs at high frequency ranges. In this paper, we investigate the effect of the parasitic components on the PDP itself and on the driver when the reactive energy of the panel is recovered. Various drivers are classified and evaluated based on their suitability for high frequency drivers. Finally, a current-fed driver with a DC input voltage bias is proposed. This driver overcomes the effect of parasitic components in the panel and driver. It fully achieves a ZVS of all full-bridge switches and reduces the transition time of the panel polarity. It is tested to validate the high frequency sustaining driver and the experimental results are presented.

A Study on High Frequency Sustaining Driver for Improving Luminance Efficiency of AC-PDP (AC-PDP의 광효율 향상을 위한 고주파 구동회로에 관한 연구)

  • Choi, Seong-Wook;Han, Sang-Kyoo;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.380-384
    • /
    • 2005
  • Plasma display panel (PDP) has a serious thermal problem, because the luminance efficiency of the conventional PDP is about 1.5 lm/W and it is less than $3{\sim}5$ lm/W of cathode ray tube (CRT). Thus there is a need for improving the luminance efficiency of the PDP There are several approaches to improve the luminance efficiency of the PDP and we adopt the driving PDP at high frequency range from 400 kHz up to over 700 kHz. Since a PDP is regarded as an equivalent inherent capacitance, many types of sustaining drivers have been proposed and widely used to recover the energy stored in the PDP. However, these circuits have some drawbacks for driving PDP at high frequency range. In this paper, we investigate the effect of the parasitic components of PDP itself and driver when the reactive energy of panel is recovered. Various drivers are classified and evaluated whether it is suitable for high frequency driver, and finally current-fed type with do input voltage biased is proposed. This driver overcomes the effect of parasitic component in panel and driver and fully achieves ZVS of all full-bridge switches and reduces the transition time of the panel polarity.

  • PDF

Pressure Contact Interconnection for High Reliability Medium Power Integrated Power Electronic Modules

  • Yang, Xu;Chen, Wenjie;He, Xiaoyu;Zeng, Xiangjun;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.544-552
    • /
    • 2009
  • This paper presents a novel spring pressure contact interconnect technique for medium power integrated power electronics modules (IPEMs). The key technology of this interconnection is a spring which is made from Be-Cu alloy. By means of the string pressure contact, sufficient press-contact force and good electrical interconnection can be achieved. Another important advantage is that the spring exhibits excellent performance in enduring thermo-mechanical stress. In terms of manufacture procedure, it is also comparatively simple. A 4 kW half-bridge power inverter module is fabricated to demonstrate the performance of the proposed pressure contact technique. Electrical, thermal and mechanical test results of the packaged device are reported. The results of both the simulation and experiment have proven that a good performance can be achieved by the proposed pressure contact technique for the medium power IPEMs.

Development of Enhanced Interleaved PFC Boost Converter typed 650V Intelligent Power Module for up to 10kW HVAC Systems (10kW급 HVAC 시스템을 위한 Enhanced Interleaved PFC Boost 컨버터 형태의 650V IPM 개발)

  • Lee, Kihyun;Hong, Seunghyun;Kim, Taehyun;Jeong, Jinyong;Kwon, Taesung
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.536-538
    • /
    • 2018
  • This paper introduces an enhanced interleaved (IL) PFC (Power Factor Correction) boost converter typed 650V Intelligent Power Module (IPM), which is fully optimized hybrid IGBT converter modules; Silicon (Si) IGBT and Silicon Carbide (SiC) diode, for up to 10kW HVAC (Heating, Ventilation, and Air Conditioning) systems. It utilizes newly developed $4^{th}$ Generation Field Stop (FS) trench IGBTs, $EXTREMEFAST^{TM}$ anti-paralleled diodes, SiC Junction Barrier Schottky (JBS) diodes, Bridge rectifiers, Multi-function LVIC, and Built-in thermistor provide good reliable characteristics for the entire system. This module also takes technical advantage of DBC (Direct Bonded Copper) substrate for the better thermal performance. It is shown that the Si IGBT/SiC diode hybrid IL PFC module can achieve excellent EMI performance and greatly enhance the power handling capability or switching frequency of various applications compared to the Si IGBT/Diode. This paper provides an overall description of the newly developed 650V/50A Hybrid SiC IL PFC IPM product.

  • PDF

A Study on the Output Stabilization of the Nd:YAG Laser by the Monitoring of Capacitor Charging Voltage

  • Noh, Ki-Kyong;Song, Kum-Young;Park, Jin-Young;Hong, Jung-Hwan;Park, Sung-Joon;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.96-100
    • /
    • 2004
  • The Nd: YAG laser is commonly used throughout many fields such as accurate material processing, IC marking, semiconductor annealing, medical operation devices, etc., due to the fact that it has good thermal and mechanical properties and is easy to maintain. In materials processing, it is essential to vary the laser power density for specific materials. The laser power density can be mainly controlled by the current pulse width and pulse repetition rate. It is important to control the laser energy in those fields using a pulsed laser. In this paper we propose the constant-frequency current resonant half-bridge converter and monitoring of capacitor charging voltage. This laser power supply is designed and fabricated to have less switching loss, compact size, isolation with primary and secondary transformers, and detection of capacitor charging voltage. Also, the output stabilization characteristics of this Nd: YAG laser system are investigated. The test results are described as a function of laser output energy and flashlamp arc discharging constant. At the energy storage capacitor charges constant voltage, the laser output power is 2.3% error range in 600[V].