• Title/Summary/Keyword: thermal battery

Search Result 353, Processing Time 0.022 seconds

Electrochemical and Safety Performances of Polyimide Nano fiber-based Nonwoven Separators for Li-ion Batteries

  • Kim, Yeon-Joo;Lee, Sang-Min;Kim, Seok Hong;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.26-33
    • /
    • 2015
  • In this study, cell performance and thermal stability of lithium-ion cells with a polyimide (PI) separator are investigated. In comparison to conventional polyethylene (PE) separator, the PI separator exhibits distinct advantage in microporous structure, leading to superior reliability of the cell. The cells with PI separator exhibit good cell performances as same as the cells with PE separator, but their reliability was superior to the cell with PE separator. Especially in the hot-box test at 150 and 180℃, PI separator showed a contraction percentage close to 0% at 150℃, while the PE separator showed a contraction percentage greater than 10% in both width and length. Therefore, the PI separator can be the promising candidate for separators of the next generation of lithium-ion battery.

Design of a renewable energy system with battery and power-to-methanol unit

  • Andika, Riezqa;Kim, Young;Yun, Choa Mun;Yoon, Seok Ho;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • v.36 no.1
    • /
    • pp.12-20
    • /
    • 2019
  • An energy storage system consisting of a battery and a power-to-methanol (PtM) unit was investigated to develop an energy storage system for renewable energy systems. A nonlinear programming model was established to optimize the energy storage system. The optimal installation capacities of the battery and power-to-methanol units were determined to minimize the cost of the energy system. The cost from a renewable energy system was assessed for four configurations, with or without energy storage units, of the battery and the power-to-methanol unit. The proposed model was applied to the modified electricity supply and demand based on published data. The results show that value-adding units, such as PtM, need be included to build a stable renewable energy system. This work will significantly contribute to the advancement of electricity supply and demand management and to the establishment of a nationwide policy for renewable energy storage.

Effect of Thermal Management of Lithium-Ion Battery on Driving Range of Electric Vehicle (리튬이온 배터리의 열관리가 전기자동차 주행거리에 미치는 영향)

  • Park, Chul-Eun;Yoo, Se-Woong;Jeong, Young-Hwan;Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.22-28
    • /
    • 2017
  • The performance of lithium ion batteries used in electric vehicles (EV) varies greatly depending on the battery temperature. In this paper, the finite difference method was used to evaluate the temperature change, state of charge (SOC), internal resistance, and voltage change of the battery due to heat generation in the battery. The simulation model was linked with AMESim to calculate the driving range of an EV traveling in New European Driving Cycle (NEDC) mode. As the temperature dropped below $25^{\circ}C$, the internal resistance of the battery increased, which increased the amount of heat generated and decreased the driving range of EV. At battery temperatures above $25^{\circ}C$, the driving range was also decreased due to reduced SOC that deteriorated the battery performance. The battery showed optimal performance and the driving range was maximized at $25^{\circ}C$. When battery temperatures of $-20^{\circ}C$ and $45^{\circ}C$, the driving range of EV decreased by 33% and 1.8%, respectively. Maintaining the optimum battery temperature requires heating the battery at low temperature and cooling it down at high temperature through efficient battery thermal management. Approximately 500 W of heat should be supplied to the battery when the ambient temperature is $-20^{\circ}C$, while 250 W of heat should be removed for the battery to be maintained at $25^{\circ}C$.

Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method (등가물성 및 집중용량법을 이용한 리튬-이온 전지의 열해석)

  • Lee, Hee Won;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.775-780
    • /
    • 2013
  • In general, the battery module of an electric vehicle (EV) consists of lithium-ion cells. A lithium-ion battery is a secondary rechargeable battery, and it consists of numerous stacked plates that serve as electrodes and separators. Owing to these microstructural features, its numerical analysis is very expensive. Therefore, this study aims to present a simplified thermal analysis model using equivalent thermal properties, and we compare the experimental results with numerical results for 185.3Ah and 20Ah cells. Furthermore, we show the thermal behavior of cells without the finite element method (FEM) or finite volume method (FVM) by adopting the lumped capacitance method (LCM).

A Study on the Improvement of the Thermal Stability of PE Separator for Lithium Secondary Battery Application Using Poly(meta-phenylene isophthalamide) (Poly(meta-phenylene isophthalamide)를 이용한 리튬이차전지용 PE 분리막의 고내열화 연구)

  • Park, Mina;Ra, Byung Ho;Bae, Jin-Young;Kim, Byung-Hyun;Choi, Won-Kun
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • In this study, we prepared separators with improved thermal stability by coating microporous polyethylene (PE) film for lithium secondary battery using poly(meta-phenylene isophthalamide) (Nomex). The mechanical and thermal properties of prepared separators were evaluated by thermal stability test and TMA as a function of the Nomex concentration and coating parameters. The corresponding coated PE separator showed better thermal and mechanical properties than the original PE separator. Electrochemical properties were also assessed by ionic conductivity, cyclic voltammetry and charge/discharge cycle.

바이모달 트램용 리튬폴리머전지팩에 대한 열유동해석

  • Lee, Gang-Won;Jang, Se-Gi;Jo, Se-Hyeon;Bae, Jong-Min;Gang, Hwan-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.289-289
    • /
    • 2009
  • The series hybrid propulsion system in bimodal tram consists of CNG engine, generator, inverter, motor and battery as main components. Among them, battery is very important thing to make a hybrid bimodal tram more efficient in driving. Battery pack is composed of 168 LPB(lithium polymer battery) cells, 650Vdc-300A. LPB should be treated with a good consideration in both temperature and overvoltage. This paper had analyzed and investigated the thermal flow and distribution of LPB module(l4 LPB cells) and Pack in simulated environments by commercial thermal analysis tool.

  • PDF

Development of BLDC Motor for HEV Engine Cooling and Battery Cooling System (하이브리드 차량의 엔진 및 배터리 냉각팬 구동용 BLDC모터 개발)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Hybrid Electric Vehicles(HEVs) have seriously come into prevalence recently as car manufacturers and consumers have become more aware of the environmental and economic problems of conventional vehicles. For the alternative power-train and battery cooling systems in HEVs, an effective thermal management system is required, and many automakers are interested in using Brushless DC(BLDC) motors for cooling fans for the overall traction unit's performance and energy saving capability. This paper presents the development status of BLDC motors as major parts of the power-train, i.e. the engine cooling and battery cooling fans of HEVs. A design that uses BLDC motors for the power-train and each battery cooling fan, is successfully implemented through using electro-magnetic analysis, and prototype BLDC motors are examined. As experimental results, the BLDC motors achieved an efficiency of 85% as engine cooling fans and 72% as a battery thermal management fan motor. The electric cogging noise is significantly reduced by changing the skew of the slot pitch angle and optimizing the magnetic shape.

Study on the Fabrication of Various AAO Membranes for the Application of Li-ion Battery Separator (다양한 형태의 AAO membrane 제조 및 리튬이온 전지의 분리막 응용 연구)

  • Kim, Moonsu;Lim, Kyungmin;Ha, Jaeyun;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.213-221
    • /
    • 2021
  • In order to improve the energy density and safety of Li-ion batteries, the development of a separator with high thermal stability and electrolyte wettability is an important desire. Thus, the ceramic separator to replace the polymer type is one of the most promising materials that can prevent short-circuit caused by the formation of dendrite and thermal deformation. In this study, we introduce the fabrication of various anodic aluminum oxide membranes for the application of Li-ion battery separators with the advantages of improved mechanical/thermal stability, wettability, and a high rate of Li+ migration through the membrane. Two different types of through-holes and branched anodic aluminum oxide membranes are well used in lithium-ion battery separators, however, branched anodic aluminum oxide membranes exhibit the most improved performance with capacity (126.0 mAh g-1 @ 0.3C), capacity drop at the high C-rate (30.6 %), and low internal resistance (8.2 Ω).