• 제목/요약/키워드: thermal balance test

검색결과 64건 처리시간 0.026초

부분 유입 노즐을 적용한 초임계 이산화탄소 발전용 초고속 터보발전기 개발 연구 (Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO2 Power Generation)

  • 조준현;신형기;강영석;김병휘;이길봉;백영진
    • 대한기계학회논문집B
    • /
    • 제41권4호
    • /
    • pp.293-301
    • /
    • 2017
  • 초임계 이산화탄소 발전사이클의 다양한 특성을 분석하기 위하여 Sub-kWe급의 소형 실험장치를 설계, 제작하였으며, 터보발전기를 개발하였다. 초임계 이산화탄소 발전용 터빈에서는 팽창비가 작고, 유량이 작기 때문에 터보발전기의 회전수가 높아지게 되고, 이에 따라 회전 부품의 선정, 터빈 공력설계, 축력 및 회전체 동역학 설계가 어려워지게 된다. 이에 터보발전기의 회전수를 줄이기 위하여 노즐의 여러 채널 중 1개의 노즐만 사용하는 부분유입 방법을 세계 최초로 초임계 이산화탄소 발전용 터보발전기에 적용하였으며, 회전체의 진동을 측정하여 부분유입 노즐을 적용함에도 회전체 안정성은 허용 범위내에 있음을 확인하였다.

해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토 (Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC)

  • 정훈;허균영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF

상용 프로그램을 이용한 열병합 발전용 고압(HP)-중압(IP) 증기터빈 모델의 성능해석에 대한 연구 (A Study on the Performance Analysis of the High Pressure - Intermediate Pressure Steam Turbine Model for Co-generation Plants using Commercial Programs)

  • 원종필;오승태;오정모
    • 해양환경안전학회지
    • /
    • 제29권4호
    • /
    • pp.395-406
    • /
    • 2023
  • 우리나라 열병합 발전소에서 운영되고 있는 최신 증기터빈의 출력과 효율 향상을 위한 첫 번째 기술적인 진보는 고온, 고압의 증기를 사용할 수 있는 소재 개발의 진척이라고 할 수 있다. 소재의 발전과 더불어 증기터빈의 내부효율 향상을 위한 설계적 노력의 결실로 높은 효율의 증기터빈이 제작되었다. 오랜 기간 운전 중인 증기터빈의 내부효율은 기계적 수명의 한계로 점차 손실이 발생하고 효율과 출력이 떨어지게 된다. 이러한 이유로 본 연구에서는 상용프로그램을 이용하여 열병합 발전소용 고압(HP)-중압(IP) 증기터빈의 증기유로 성능해석을 수행할 수 있는 모델을 개발하고 성능계산 방법을 제시하고자 한다. 증기터빈의 복잡한 성능계산방식으로 인해 증기터빈 실무자들에게 실질적으로 유용한 참고문헌이 될 수 있도록 주요 변수들을 제시하였다. 또한 증기터빈 성능계산에 필요한 열정산도 분석과 증기터빈 성능계산 결과의 적합성을 성능시험 결과와 비교 확인하였다.

ENERGY SPECTRUM OF NONTHERMAL ELECTRONS ACCELERATED AT A PLANE SHOCK

  • Kang, Hye-Sung
    • 천문학회지
    • /
    • 제44권2호
    • /
    • pp.49-58
    • /
    • 2011
  • We calculate the energy spectra of cosmic ray (CR) protons and electrons at a plane shock with quasi-parallel magnetic fields, using time-dependent, diffusive shock acceleration (DSA) simulations, including energy losses via synchrotron emission and Inverse Compton (IC) scattering. A thermal leakage injection model and a Bohm type diffusion coefficient are adopted. The electron spectrum at the shock becomes steady after the DSA energy gains balance the synchrotron/IC losses, and it cuts off at the equilibrium momentum $p_{eq}$. In the postshock region the cutoff momentum of the electron spectrum decreases with the distance from the shock due to the energy losses and the thickness of the spatial distribution of electrons scales as $p^{-1}$. Thus the slope of the downstream integrated spectrum steepens by one power of p for $p_{br}$ < p < $p_{eq}$, where the break momentum decreases with the shock age as $p_{br}\;{\infty}\;t^{-1}$. In a CR modified shock, both the proton and electron spectrum exhibit a concave curvature and deviate from the canonical test-particle power-law, and the upstream integrated electron spectrum could dominate over the downstream integrated spectrum near the cutoff momentum. Thus the spectral shape near the cutoff of X-ray synchrotron emission could reveal a signature of nonlinear DSA.

추적자를 이용한 유량 측정 (Measurement of Water Flow in Closed Conduits by Chemical Tracer Method)

  • 이선기;정백순;김창호
    • 한국유체기계학회 논문집
    • /
    • 제2권2호
    • /
    • pp.19-26
    • /
    • 1999
  • Thermal output in a nuclear power plant is verified with calorimetric heat balance on the secondary plant. The calorimetry involves the precise measurement of the feedwater flow rate. However, the correct indication of feedwater flow rate obtained by a pressure-difference measurement across a venturi can be affected by instrument errors, fouling or a poorly developed velocity profile. This can result in an inaccurate mass flow rate and consequently an inaccurate estimate of power. The purpose of this study is to develop verification methods with accuracy better than $0.5\%$ for high precision flow measurement to be used for measuring feedwater flow rate. This chemical tracer method is a testing process that uses tracers which can be applied to quantify losses in electrical output due to the incorrect measurements of feedwater flow rate. And this system has good response to the variation of the flow rate. Accuracy of better than 0.5 percent can be expected for feedwater flow measurement, providing that the system can be stabilized during the test. This methodology is applicable to other flow systems well.

  • PDF

Profit-based Thermal Unit Maintenance Scheduling under Price Volatility by Reactive Tabu Search

  • Sugimoto Junjiro;Yokoyama Ryuichi
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권4호
    • /
    • pp.331-338
    • /
    • 2005
  • In this paper, an improved maintenance scheduling approach suitable for the competitive environment is proposed by taking account of profits and costs of generation companies and the formulated combinatorial optimization problem is solved by using Reactive Tabu search (RTS). In competitive power markets, electricity prices are determined by the balance between demand and supply through electric power exchanges or by bilateral contracts. Therefore, in decision makings, it is essential for system operation planners and market participants to take the volatility of electricity price into consideration. In the proposed maintenance scheduling approach, firstly, electricity prices over the targeted period are forecasted based on Artificial Neural Network (ANN) and also a newly proposed aggregated bidding curve. Secondary, the maintenance scheduling is formulated as a combinatorial optimization problem with a novel objective function by which the most profitable maintenance schedule would be attained. As an objective function, Opportunity Loss by Maintenance (OLM) is adopted to maximize the profit of generation companies (GENCOS). Thirdly, the combinatorial optimization maintenance scheduling problem is solved by using Reactive Tabu Search in the light of the objective functions and forecasted electricity prices. Finally, the proposed maintenance scheduling is applied to a practical test power system to verify the advantages and practicability of the proposed method.

항공기 브레이크 재료용 탄소/탄소 복합재료의 마찰 및 마모 거동 (Friction and Wear Behavior of Carbon/Carbon Composites for Aircraft Brake Material)

  • 우성택;윤재륜
    • Tribology and Lubricants
    • /
    • 제9권1호
    • /
    • pp.62-69
    • /
    • 1993
  • Friction and wear behavior of a carbon/carbon composite material for aircraft brake material was experimentally investigated. Friction and wear test setup was designed and built for the experiment. Friction and wear tests were conducted under various sliding conditions. Friction coefficients were measured and processed by a data acquisition system and amount of wear measured by a balance. Stainless steel disk was used as the counterface material. Temperature was also measured by inserting thermocouple 2.5 mm beneath the sliding surface of the carbon/carbon composite specimen. Wear surfaces were observed by SEM, and analyzed by EDAX. The experimental results showed that sliding speed and normal force did not have significant effects on friction coefficient and wear factor of the composite. Temperature increase just below the surface was not large enough to cause any thermal degradation or oxidation which occurred at higher temperature when tested by TGA. Wear film was generated both on the specimen and on the counterface at relatively low sliding speed but cracks, grooves, and wear debris were observed at high sliding speed. Friction coefficient remained almost constant when the sliding speed or normal load was varied. It is believed that the adhesive and abrasive components contributed mainly to the friction coefficient. Wear behavior at low sliding speed was governed by wear film formation and adhesive wear mechanism. At high speed, fiber orientation, ploughing by counterface asperities, and fiber breakage dominated wear of the carbon/carbon composite.

Large amplitude oscillatory shear behavior of the network model for associating polymeric systems

  • Ahn, Kyung-Hyun;Kim, Seung-Ha;Sim, Hoon-Goo;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제14권2호
    • /
    • pp.49-55
    • /
    • 2002
  • To understand the large amplitude oscillatory shear (LAOS) behavior of complex fluids, we have investigated the flow behavior of a network model in the LAOS environment. We applied the LAOS flow to the model proposed by Vaccaro and Marrucci (2000), which was originally developed to describe the system of associating telechelic polymers. The model was found to predict at least three different types of LAOS behavior; strain thinning (G' and G" decreasing), strong strain overshoot (G' and G" increasing followed by decreasing), and weak strain overshoot (G' decreasing, G" increasing followed by decreasing). The overshoot behavior in the strain sweep test, which il often observed in some complex fluid systems with little explanation, could be explained in terms of the model parameters, or in terms of the overall balance between the creation and loss rates of the network junctions, which are continually created and destroyed due to thermal and flow energy. This model does not predict strain hardening behavior because of the finitely extensible nonlinear elastic (FENE) type nonlinear effect of loss rate. However, the model predicts the LAOS behavior of most of the complex fluids observed in the experiments.he experiments.

휠로더 흡배기구의 유동손실계수를 적용한 열유동해석 (Thermal-Fluid Analysis with Flow Loss Coefficient on the Inlet and Exhaust Duct of Wheel-Loader)

  • 정찬혁;이재석
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권2호
    • /
    • pp.97-104
    • /
    • 2017
  • 본 논문에서는 휠로더 냉각성능 평가를 위한 열유동해석의 효율성 향상과 비용 저감을 위해서 흡배기구 다공판형상을 Porous media 기법을 이용하여 단순화하고 해석 정도를 확인하였다. 여기서 Porous media에 적용된 다공판형상의 유동손실계수는 시험데이터를 바탕으로 정의하였다. 또한 다공판형상의 유동손실계수를 해석적으로 정의하기 위해 단위형상에 대한 압력손실을 계산하고 시험결과와 비교하였다. 마지막으로 휠로더 흡배기구를 단순화한 해석모델의 냉각해석 결과와 실차 방열시험 결과를 비교하였다. 이 연구를 통해 휠로더 흡배기구 단순화 해석기법의 적용 가능성을 확인하였으며 냉각성능 평가 및 개선 연구를 효과적으로 수행할 수 있는 기반을 마련하였다.

JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C

  • Kunitomi, Kazuhiko;Yan, Xing;Nishihara, Tetsuo;Sakaba, Nariaki;Mouri, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.9-20
    • /
    • 2007
  • Design study on the Gas Turbine High Temperature Reactor 300-Cogeneration (GTHTR300C) aiming at producing both electricity by a gas turbine and hydrogen by a thermochemical water splitting method (IS process method) has been conducted. It is expected to be one of the most attractive systems to provide hydrogen for fuel cell vehicles after 2030. The GTHTR300C employs a block type Very High Temperature Reactor (VHTR) with thermal power of 600MW and outlet coolant temperature of $950^{\circ}C$. The intermediate heat exchanger (IHX) and the gas turbine are arranged in series in the primary circuit. The IHX transfers the heat of 170MW to the secondary system used for hydrogen production. The balance of the reactor thermal power is used for electricity generation. The GTHTR300C is designed based on the existing technologies of the High Temperature Engineering Test Reactor (HTTR) and helium turbine power conversion and on the technologies whose development have been well under way for IS hydrogen production process so as to minimize cost and risk of deployment. This paper describes the original design features focusing on the plant layout and plant cycle of the GTHTR300C together with present development status of the GTHTR300, IHX, etc. Also, the advantage of the GTHTR300C is presented.