• Title/Summary/Keyword: thermal anisotropy

Search Result 106, Processing Time 0.023 seconds

A Case Study for Improving the Manufacturing Process of Composite Main Wing for Small Aircraft (소형 항공기 주익 복합재료 적용 사례 분석을 통한 개선 방향 연구)

  • Cho, Il-Ryun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 2015
  • Composite materials are widely used as structural materials for manufacturing an aircraft, due to their : low weight, low thermal expansion coefficient, production efficiency, anisotropy, corrosion resistance and long fatigue life. The range of using composite materials has been extended from the fuselage and the wings to the entire aircraft structure. In this paper, by analyzing the problems which were generated while designing and fabricating aircraft structures using composite materials, the differences between metallic structures and composite structures are described. In addition, the methodological improvement directions on design and fabricating are described.

Effect of Temperature on Photoinduced Reorientation of Azobenzee Chromophore in the Side Chain Copolymers

  • 최동훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1010-1016
    • /
    • 1999
  • We synthesized the photoresponsive side chain polymers containing aminonitro azobenzene for studying the effect of temperature on photoinduced birefringence. Four different copolymers were prepared using methacrylate, α-methylstyrene, and itaconate monomer. Photoisomerization was observed under the exposure of UV light using UV-VIS absorption spectroscopy. Reorientation of polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The change of the birefringence was observed with increasing the sample temperature under a continuous irradiation of excitation light. We could estimate the activation energy of molecular motion in thermal and photochemical mode. Besides the effect of glass transition temperature on the activation energy, we focused our interests on the effect of geometrical hindrance of polar azobenzene molecules and cooperative motion of environmental mesogenic molecules in the vicinity of polar azobenzene molecules.

MAGNETISM OF NANOPHASE IRON PARTICLES LASER EVAPORATED IN A CONTROLLED OXYGEN ATMOSPHERE

  • Turkki, T.;Jonsson, B.J.;Strom, V.;Medelius, H.;El-Shall, M.S.;Rao, K.V.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.745-748
    • /
    • 1995
  • Magnetic nanoparticles of iron and iron oxide have been prepared in a modified upward thermal diffusion cloud chamber using pulsed laser evaporation. SEM/TEM studies of these particles reveal a size distribution with a mean diameter of about $60\;{\AA}$. FTIR spectrum measurements are used to investigate the difference in oxidation level between nanoparticles prepared at different partial oxygen pressures. The complex magnetic behaviour of these particles was studied using DC- and AC-susceptibility measurements. All samples exhibit superparamagnetism with blocking temperatures ranging from 50 K to above room temperature. The coercivity fields as well as the dependence of the blocking temperature on measuring frequency have been studied. magnetic anisotropy constants are found to be one order of magnitude higher than is known for the bulk values. The mean particle size estimated from the magnetic data is found to be in perfect agreement with the TEM observations.

  • PDF

Effect of Molecular Aggregation on the Photo-Induced Anisotropy in Amorphous Polymethacrylate Bearing an Aminonitroazobenzene Moiety

  • Kim, Beom Jun;Park, Su Yeong;Choe, Dong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.271-275
    • /
    • 2001
  • We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment an d that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of a linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light.

Evolution of Magnetic Property in Ultra Thin NiFe Films (나노두께 퍼말로이에서의 계면효과에 의한 자기적 물성 변화)

  • Jung, Young-soon;Song, Oh-sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.163-168
    • /
    • 2004
  • We prepared ultra thin film structure of Si(100)/ $SiO_2$(200 nm)/Ta(5 nm)/Ni$_{80}$Fe$_{20/(l~15 nm)}$Ta(5 nm) using an inductively coupled plasma(ICP) helicon sputter. Magnetic properties and cross-sectional microstructures were investigated with a superconduction quantum interference device(SQUID) and a transmission electron microscope(TEM), respectively. We report that NiFe films of sub-3 nm thickness show the B$_{bulk}$ = 0 and B$_{surf}$=-3 ${\times}$ 10$^{-7}$(J/$m^2$). Moreover, Curie temperature may be lowered by decreasing thickness. Coercivity become larger as temperature decreased with 0.5 nm - thick Ta/NiFe interface intermixing. Our result implies that effective magnetic properties of magnetoelastic anisotropy, saturation magnetization, and coercivity may change abruptly in nano-thick films. Thus we should consider those abrupt changes in designing nano-devices such as MRAM applications.

Effects of Aramid Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System (LNG 화물창 2차 방벽의 기계적 성능에 아라미드 섬유가 미치는 영향에 대한 연구)

  • Bang, Seoung-Gil;Yeom, Dong-Ju;Jeong, Yeon-Jae;Kim, Hee-Tae;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.206-213
    • /
    • 2021
  • Recently, although the size of the LNG Cargo Containment System (CCS) has been increasing, the secondary barrier is reported to remain unchanged, and the conventional Flexible Secondary Barrier (FSB) used in Mark-III type has been pointed out to be vulnerable to failure owing to thermal and cyclic loads. In this respect, a tensile test was carried out to verify the reinforcing effect of FSB using aramid fiber on weft compared to the conventional FSB. In order to consider the LNG leakage situation, a series of tensile tests were conducted from ambient to cryogenic temperature, and mechanical properties were evaluated for each fiber direction on account of anisotropy. Tensile behavior and fracture analyses were performed to confirm the mechanical properties of each material according to temperature. Tensile test results proved that replacing the aramid fiber instead of E-glass fiber used on weft is effective in enhancing the mechanical properties.

Thermal Stability and the Effect of Substrate Temperature on the Structural and Magnetic Properties of Pd/Co Multilayer Films (Pd/Co 다층박막의 구조 및 자기적 특성에 미치는 기판온도 및 열적안정성에 관한 연구)

  • 허용철;김상록;이성래;김창수
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.298-304
    • /
    • 1993
  • The effects of the substrate temperature and the Pd underlayer on the structure and the magnetic properties of Pd/Co multilayer films prepared by the thermal evaporation were studied. As the substrate temperature increases up to $150^{\circ}C$, the crystallinity of sublayers, (111) texture and the interface sharpness of Pd/Co multilayers were improved due to the enhanced mobility of adatoms. As results of that, the perpendicular and surface anisotropy energies were increased but the coercivity was decreased because the pinning sites of domain wall decreased due to the grain growth. The grain size of the multilayers increased with Pd underlyer thickness. Thermal degradation was enhanced at above $200^{\circ}C$ due to interdiffusion at the Pd/Co interface. The intensity of the main diffraction peak rapidly decayed in the initial stage of aging and then decreased slowly. The rapid change of the intensity in the initial stage was speculated to be due to the structural relaxation phenomena and the later stage change was due to the interdiffusion. The activation energy for the interdiffusion in Pd4/Co1 multilayers was 14.9 KCal/mole.K.

  • PDF

First Principle Studies on Magnetism and Electronic Structure of Perovskite Structured CoFeX3 (X = O, F, S, Cl) (페로브스카이트 구조를 가지는 CoFeX3(X = O, F, S, Cl) 합금의 자성과 전자구조에 대한 제일원리계산)

  • Jekal, Soyoung;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.179-184
    • /
    • 2016
  • For an industrial spin-transfer torque (STT) MRAM, low switching current and high thermal stability are required, simultaneously. For this point of view, it is essential to find magnetic materials which satisfy high spin polarization and strong perpendicular magnetocrystalline anisotropy (MCA). In this paper, we investigate electronic structures and MCA energies of perovskite $CoFeX_3$ (X = O, F, S, Cl). For X = F and Cl, spin polarization at the Fermi level are 97 % and 96 %, respectively, which are close to a half metal. Furthermore, Co-terminated 5-monolayer (ML) $CoFeX_3$ (X = O, F, S, Cl) films show perpendicular MCA. In particular, the MCA energy of the Co-terminated $CoFeCl_3$ is about 1.0 meV/cell which is three times larger than that of a 5-ML CoFe film. Therefore, we expect to realize a magnetic material with high spin polarization and strong perpendicular MCA energy by utilizing group 6 and 7 elements in the periodic table, and to contribute to commercializing of the STT-MRAM.

Analysis of Exchange Coupling Energy by Ferromagnetic Resonance Method in CoFe/MnIr Bilayers (강자성 공명법을 이용한 CoFe/MnIr 박막의 교환 결합 에너지 분석)

  • Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.204-209
    • /
    • 2012
  • We measure the ferromagnetic resonance signals in order to analyze the exchange coupling energy due to the uncompensated antiferromagnetic spins in exchange coupled CoFe/MnIr bilayers. The exchange bias fields ($H_{ex}$) and rotatable anisotropy fields ($H_{ra}$) are obtained from the ferromagnetic resonance fields measured with in-plane angle in thermal annealed samples with $t_{AF}$= 0, 3, and 10 nm. The sum of the $H_{ex}$ and $H_{ra}$ do not depend on the MnIr thickness, which means that all the uncompensated AF spins are aligned to one direction in $300^{\circ}C$ annealed samples. Therefore, the uncompensated AF spins are divided into two different parts. One parts are fixed at the interface between CoFe/MnIr bilayers and induces the $H_{ex}$, other parts are rotatable with magnetic field and induces the $H_{ra}$. Finally, the exchange coupling energy can be expressed by the sum of the exchange bias energy and rotatable anisotropy energy.

Electrical Properties and Microstructures in Ti Films Deposited by TFT dc Sputtering

  • Han, Chang-Suk;Jeon, Seung-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.207-211
    • /
    • 2016
  • Ti films were deposited on glass substrates under various preparation conditions in a chamber of two-facing-target type dc sputtering; after deposition, the electric resistivity values were measured using a conventional four-probe method. Crystallographic orientations and microstructures, including the texture and columnar structure, were also investigated for the Ti films. The morphological features, including the columnar structures and surface roughness, are well explained on the basis of Thornton's zone model. The electric resistivity and the thermal coefficient of the resistivity vary with the sputtering gas pressure. The minimum value of resistivity was around 0.4 Pa for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films; the apparent tendencies are almost the same for the two films, with a small difference in resistivity because of the different film thicknesses. The films deposited at high gas pressures show higher resistivities. The maximum of TCR is also around 0.4 Pa, which is the same as that obtained from the relationship between the resistivity and the gas pressure. The lattice spacing also decreases with increasing sputtering gas pressure for both the $0.5{\mu}m$ and $3.0{\mu}m$ thick films. Because they are strongly related to the sputtering gas pressures for Ti films that have a crystallographic anisotropy that is different from cubic symmetry, these changes are well explained on the basis of the film microstructures. It is shown that resistivity measurement can serve as a promising monitor for microstructures in sputtered Ti films.