• Title/Summary/Keyword: thermal anisotropy

Search Result 106, Processing Time 0.024 seconds

Frictional Anisotropy of CVD Bi-Layer Graphene Correlated with Surface Corrugated Structures

  • Park, Seonha;Choi, Mingi;Kim, Seokjun;Kim, Songkil
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.235-240
    • /
    • 2022
  • Atomically-thin 2D nanomaterials can be easily deformed and have surface corrugations which can influence the frictional characteristics of the 2D nanomaterials. Chemical vapor deposition (CVD) graphene can be grown in a wafer scale, which is suitable as a large-area surface coating film. The CVD growth involves cooling process to room temperature, and the thermal expansion coefficients mismatch between graphene and the metallic substrate induces a compressive strain in graphene, resulting in the surface corrugations such as wrinkles and atomic ripples. Such corrugations can induce the friction anisotropy of graphene, and therefore, accurate imaging of the surface corrugation is significant for better understanding about the friction anisotropy of CVD graphene. In this work, the combinatorial analysis using friction force microscopy (FFM) and transverse shear microscopy (TSM) was implemented to unveil the friction anisotropy of CVD bi-layer graphene. The periodic friction anisotropy of the wrinkles was measured following a sinusoidal curve depending on the angles between the wrinkles and the scanning tip, and the two domains were observed to have the different friction signals due to the different directions of the atomic ripples, which was confirmed by the high-resolution FFM and TSM imaging. In addition, we revealed that the atomic ripples can be easily suppressed by ironing the surface during AFM scans with an appropriate normal force. This work demonstrates that the friction anisotropy of CVD bilayer graphene is well-correlated with the corrugated structures and the local friction anisotropy induced by the atomic ripples can be controllably removed by simple AFM scans.

Perpendicular Exchange Bias and Thermal Stability of [Pd/Co]N/FeMn Films

  • Joo, H.W.;Kim, S.W.;An, J.H.;Choi, J.H.;Lee, M.S.;Lee, K.A.;Hwang, D.G.;Lee, S.S.
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.33-35
    • /
    • 2005
  • Perpendicular magnetization curves and crystal textures of $[Pd(0.8 nm)/Co(0.8 nm)]_5/FeMn$ multilayers having an exchange-biased perpendicular magnetic anisotropy as a function of FeMn thickness and annealing temperature were measured. As FeMn thickness increases from 0 to 21 nm, the perpendicular exchange biasing field ($H_{ex}$) obtained the maximum value of 130 Oe at FeMn thickness 12 nm. As the annealing temperature increases to $240^{\circ}C$, the Hex increased from 115 Oe to 190 Oe and the exchange-biased perpendicular magnetic anisotropy disappeared at $330^{\circ}C$.

Exchange Bias Perpendicular Magnetic Anisotropy and Thermal Stability of (Pd/Co)N/FeMn Multilayer ((Pd/Co)N/FeMn 다층막에서의 교환바이어스 수직자기이방성과 열적안정성)

  • Joo, Ho-Wan;An, Jin-Hee;Kim, Bo-Keun;Kim, Sun-Wook;Lee, Kee-Am;Lee, Sang-Suk;Hwang, Do-Geun
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.127-130
    • /
    • 2004
  • Magnetic properties and thermal stability by exchange biased perpendicular magnetic anisotropy in (Pd/Co)$_{N}$FeMn multilayer deposited by do magnetron sputtering system are investigated. We measured the perpendicular magnetization curves of (Pd(0.8nm)/Co(0.8nm)$_{5}$FeMn multilayer as function of FeMn thickness and annealing temperature. As FeMn thickness increases from 0 to 21nm, the perpendicular exchange bias(Hex) obtained 127 Oe at FeMn thickness 15nm. As the annealing temperature increases to 24$0^{\circ}C$, the E$_{ex}$ increased from 115 Oe to 190 Oe and disappeared exchange biased perpendicular magnetic anisotropy effect at 33$0^{\circ}C$.

Fabrication of Porous Al2O3 Ceramics Using Thermoplastic Polymer (열가소성 고분자를 이용한 다공질 알루미나의 제조)

  • 이상진;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.513-517
    • /
    • 2004
  • Porous alumina ceramics with aligned plate-shaped pores were fabricated by using thermoplastic microsphere in order to show the anisotropy in thermal conductivity. The mixed powder of alumina and microsphere was pressed under 15 MPa till 20$0^{\circ}C$ to deform polymer into platelet-shape and sintered at 1,00$0^{\circ}C$ for 1 h. The sintered specimen with 10 wt% microsphere has 45.3% porosity and the bending strength of 44 MPa. The microstructural investigation confirmed the pore structure of platelet-shape, the thermal conductivities for vertical and parallel directions are 3.803 W/mK and 7.818 W/mK, respectively, the ratio between two directions exceeds 2.

Magnetization Angle and Thickness Dependence of Perpendicular Exchange Anisotropy in [Pd/Co]n/FeMn Films

  • Choi, S.D.;Joo, H.W.;Yun, D.K.;Lee, M.S.;Lee, K.A.;Lee, H.S.;Kim, S.W.;Lee, S.S.;Hwang, D.G.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.70-73
    • /
    • 2006
  • The magnetization angle and thickness dependence of magnetic anisotropy in the exchange-biased [Pd/Co]${\times}$5/FeMn multilayers with an out-of-plane anisotropy were investigated to determine the origin of perpendicular exchange biasing. As the Co thickness increased to 1.5 nm in the [Pd(0.8 nm)/Co(t)]${\times}$5/FeMn(120 nm) films, the hysteresis loops were converted from square loops at a thin Co (<0.4 nm) to complicated round ones at a thick Co. The irregularly asymmetric step (IAS) at the left top of the loop appeared in the loop of the 0.6-nm Co film due to an inhomogeneity in the exchange anisotropy. As the Pd thickness increased to 1.6 nm, the step disappeared, and the perpendicular magnetic anisotropy was maximized in the Co thickness between 0.6 and 0.9 nm. The conversion of the magnetization loop along the magnetization angle coincided with the equation $H_{(eff)}=H_o\;cos{\theta}$. The IAS of the 0.8-nm Pd film disappeared after thermal annealing up to $200^{\circ}C$ under an external magnetic field.

Fabrication of Porous Materials having an Anisotropic Thermal Conductivity through the Alignment of Plate-shaped Pores (배향된 판상 기공구조를 통해 열전도도 이방성을 갖는 다공질 재료의 제조)

  • Yun, Jung-Yeol;Song, In-Hyeok;Kim, Hae-Du
    • 연구논문집
    • /
    • s.33
    • /
    • pp.147-155
    • /
    • 2003
  • In order to fabricate porous materials having an anisotropic thermal conductivity by aligning plate-shaped pores structure, alumina powder (AM-21, mean particle size $4\mum$) and flake crystalline graphite was used. The aligned pore structure was realized using multi-pressing process. Degree of pore orientation increased with the number of pressing and thermal conductivity, parallel to the pressing direction, decreased with the number of pressing. Thermal conductivity decreased significantly to the addition of 30vol% crystalline graphite, however, in the case of 60vol%, thermal conductivity did not decrease significantly due to the breakage of crystalline graphite. An anisotropy of the thermal conductivity increased with the content of crystalline graphite up to 30vol%. Graded pore structure was fabricated by controlling the content and size of crystalline graphite, which provides, possibly, the enhancement in mechanical strength and thermal insulation properties of the insulating bricks.

  • PDF

Lattice Thermal Conductivity Calculation of Sb2Te3 using Molecular Dynamics Simulations

  • Jeong, Inki;Yoon, Young-Gui
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1541-1545
    • /
    • 2018
  • We study lattice thermal conductivity of $Sb_2Te_3$ using molecular dynamics simulations. The interatomic potentials are fitted to reproduce total energy and elastic constants, and phonon properties calculated using the potentials are in reasonable agreement with first-principles calculations and experimental data. Our calculated lattice thermal conductivities of $Sb_2Te_3$ decrease with temperature from 150 K to 500 K. The in-plane lattice thermal conductivity of $Sb_2Te_3$ is higher than cross-plane lattice thermal conductivity of $Sb_2Te_3$, as in the case of $Bi_2Te_3$, which is consistent with the anisotropy of the elastic constants.