• 제목/요약/키워드: thermal and magnetic fields

검색결과 104건 처리시간 0.025초

COERCIVE FIELD AND SPIN-GLASS BEHAVIOR OF AMORPHOUS Y-Fe ALLOYS

  • Fujita, A.;Fukamichi, K.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.762-766
    • /
    • 1995
  • The coercive field $H_{c}$ of amorphous Y-Fe alloys in the spin-glass state has been investigated. Foramorphous $Y_{10}Fe_{90}$ alloy, the thermal variations of $H_{c}$ in the maximum external field $H_{max}=300,\;600$ and 1 k Oe exhibit a maximum. Since spin-glass behavior is strongly affected by external magnetic fields, the maximum point moves to lower temperature with increasing $H_{max}$. The appearance of the maximum in $H_{c}$ has been discussed in terms of the change of the spin-glass state in the external magnetic field. When the value of $H_{max}$ is 55 kOe, the temperature dependence of $H_{c}$ has no maximum and shows an exponential decrease with increasing temperature. Similar trends have been observed over a wide concentration range. The concentration dependence of $H_{c}$ is associated with the magnetic phase diagram.

  • PDF

Quench characteristics of YBCO thin films using magnetic field source for superconducting fault current limiters

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Oh, I.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권2호
    • /
    • pp.11-14
    • /
    • 2004
  • YBCO thin films have good characteristics for current limiting materials due to compact size and high current carrying capability. But the irregularities and the extreme thin thickness of YBCO films cause some difficulties in simultaneous quench and thermal shock protection. In order to solve these problems, vertical magnetic field generated from solenoid coil was applied to the YBCO element. And also to minimize the inductance caused by the serial connection of magnetic field source with superconducting elements, magnetic field source was separated from the power lines adapting protective current transformer. In this study, electric field-current (E-I) and quench characteristics of YBCO films were analyzed both by electrical measuring method and observations of bubble propagation. From the experiment results, it was revealed that the magnetic fields generated by surrounding coil could induce the uniform quench distribution for all stripes of current limiting units and finally simultaneous quenches were realized in all serial connection of YBCO elements. In addition, the separation of magnetic field source form electrical network could be good solution for simultaneous quench of YBCO films without any unnecessary effect caused by serial connection.

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C.;Hong, Y.K.;Rudge J.;Donohoe G.;Xiao Q.F.
    • Journal of Magnetics
    • /
    • 제11권2호
    • /
    • pp.61-65
    • /
    • 2006
  • The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

Transport properties of carbide superconductor La2C3

  • Kim, J.S.;Kremer, R.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권1호
    • /
    • pp.6-10
    • /
    • 2013
  • We investigate the electrical and thermal transport properties of a sesquicarbide superconductor $La_2C_3$, including electrical resistivity, thermoelectric power, and thermal conductivity. The electrical resistivity exhibits a typical metallic character with a saturation behavior at high temperatures. The thermoelectric power shows a metallic behavior with pronounced phonon-drag effect, comparable with pure metals. The broad peak of the thermal conductivity is observed in the superconducting state, which is rapidly suppressed by magnetic fields. These observations suggest that the electron-phonon scattering is significant in $La_2C_3$, which is relevant with the relatively high-$T_c$ in $La_2C_3$ through strong electron-phonon coupling with low frequency phonon modes.

Spiral Magnetic Field Lines in a Hub-Filament Structure, Monoceros R2

  • Hwang, Jihye;Kim, Jongsoo
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.59.3-60
    • /
    • 2020
  • We present the results of polarization observations at submillimeter wavelengths towards Monoceros R2 (Mon R2). The polarized thermal dust emission was obtained from SCUBA-2/POL-2 at 450 ㎛ and 850 ㎛, simultaneously. This observation is a part of the JCMT BISTRO survey project. The polarization angle distributions at 450 ㎛ and 850 ㎛ are similar and the mean value of angle differences at two wavelengths is 5.5 degrees. The Mon R2 is one of massive star-forming regions containing a clear hub-filamentary structure. The hub region shows star formation activities, and surrounding filaments provide channels for matters to move into the hub region. It is not well known the role of magnetic fields in a hub-filamentary structure. Some studies have shown well-ordered polarization segments along a filamentary structure and magnetic field morphology traced by polarization segments is interpreted as to help gas flow along the filamentary structrue. Our observations shows that filaments in Mon R2 have spiral structure and the magnetic field lines are parallel to the filaments. We interpret that the spiral structure can be formed by a rotation hub-filament system with gas flowing along the filaments to the hub. We found several dust clumps at the central part of the hub region of the Mon R2. They seems to be formed at locations where spiral field lines meet each other. These results show one observational example that a magnetic field play a role in gas flow.

  • PDF

A semispherical SQUID magnetometer system using high sensitivity double relaxation oscillation SQUIDs for magnetoencephalographic measurements

  • Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kim, Kwoong;Park, Yong-Ki
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.21-26
    • /
    • 2003
  • We designed and constructed a multichannel superconducting quantum interference device (SQUID) magnetometer system to measure magnetic fields from the human brain. We used a new type of SQUID, the double relaxation oscillation SQUID (DROS). With high flux-to-voltage transfers of the DROS, about 10 times larger than the dc SQUIDs, simple flux-locked loop circuits could be used for SQUID operation. Also the large modulation voltage of the DROS, typically being 100 $mutextrm{V}$, enabled stable flux-locked loop operation against the thermal offset voltage drift of the preamplifier. The magnetometers were fabricated using the Nb/AlOx/Nb junction technology. The SQUID system consists of 37 signal magnetometers, distributed on a semispherical surface, and 11 reference channels were installed to pickup background noises. External feedback was used to eliminate the magnetic coupling with the adjacent channels. The liquid helium dewar has a capacity of 29 L and boil-off rate of about 4 L/d with the total 48 channel insert. The magnetometer system has an average noise level of 3 fT/√Hz at 100 Hz, inside a shielded loon, and was applied to measure auditory-evoked fields.

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

Study on Heat Generation of a Bulk HTS for Application to a 100 kWh SFES Superconductor Bearing

  • Jung, S.Y.;Lee, J.P.;Han, Y.H.;Han, S.C.;Jeong, N.H.;Ko, J.S.;Jeong, S.K.;Sung, T.H.
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.122-126
    • /
    • 2006
  • This paper presents experimental and numerical investigation on heat generation of a bulk HTS for application to a 100 kWh Superconductor Flywheel Energy Storage System(SFES) bearing. An experimental device is manufactured to reproduce varying magnetic field conditions that a bulk HTS may experience during the operation of the 100 kWh SFES. The bulk HTS is directly cooled by a cryocooler while the heat is generated by the eddy currents created by varying magnetic fields induced by a coil. In order to design the cryocooling system for the 100 kWh SFES project, a preliminary experiment to investigate the actual cooling load variation under AC magnetic field has been carried out. In the experiment, two different copper holders were designed and tested. Several temperature sensors were installed on each component of the assembly and the temperatures were measured for several operating conditions of the 100 kWh SFES. The experimental investigation on the thermal response of the bulk HTS and its holder is considered to be a valuable step fur the successful materialization of a large-scale SFES.

  • PDF

Dynamic Spin Switching of Magnetic Films and Tunnel Junctions

  • Miyazaki, T.;Ando, Y.;Kubota, H.;Mizukami, Y.;Nakamura, H.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.272-273
    • /
    • 2003
  • Spin dynamics has been investigated intensively in various kinds of fields. Most popular one is an initial permeability at high frequency. Also, magnetic after-effect such as thermal fluctuation of fine magnetic particles and disaccommodation in soft magnetic materials were extensively studied in the past. When we apply an external farce with the same frequency as that of the system being examined, the system absorbs the external energy and the precession enhances. It is called resonance in general. Among the various resonances, ferromagnetic resonance (FMR) has been used as a good tool to evaluate material constants such as saturation manetization or spin damping parameter by analyzing a resonance curve. In this talk first instinctive understanding of Gilbert spin damping and spin pumping will be explained. Then, experimental data for enhancement of Gilbert damping parameter (G) evaluated from FMR spectrum and spin precession measured by a time resolved pump-probe method for Permalloy thin film will be introduced. Finally, magnetization reversal observed by air-coplanar probe will be given.

  • PDF

Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future

  • Jung, Na Young;Chang, Jin Woo
    • Journal of Korean Medical Science
    • /
    • 제33권44호
    • /
    • pp.279.1-279.16
    • /
    • 2018
  • Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.