• Title/Summary/Keyword: thermal and dynamic modeling

Search Result 85, Processing Time 0.025 seconds

AGS Distribution in Low-Speed Round-Oval Rolling of S20C Steel (S20C강 저속 라운드-모발 압연의 AGS 분포)

  • Kwon H. C.;Lee H. W.;Lee Y.;Im Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.297-306
    • /
    • 2004
  • This study investigated Austenite Grain Size (AGS) distribution in Low-Speed Round-Oval Rolling. Rolling experiments were done along with the AGS numerical modeling to characterize the final AGS distribution and its kinetics behavior. For bar rolling experiment, we utilized the pilot rolling mill, operating at 34 fixed rpm, at POSCO Technical Research Laboratories. To investigate the microstructural observation, the rigid-viscoplastic finite element analysis was combined with Hodgson's AGS evolution model. To consider the transient thermal history in the integrative AGS modeling, additivity rule was introduced. The integrated analysis revealed that static or meta-dynamic recrystallization is responsible for the AGS difference in the inner or outer region of rolled bar. Comparative study showed that the current AGS modeling approach can be used to model the overall AGS distribution in bar rolling processes. For more accurate AGS prediction, the AGS modeling method should be verified under the various rolling conditions such as different rolling speeds and different deformations.

  • PDF

Dynamics modeling of a GHP in cooling mode for development of control algorithm (제어 알고리즘 개발을 위한 GHP 냉방모드 동특성 모델링)

  • Shin Younggy;Kim Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2005
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump(GHP) for design of control algorithm. The dynamic modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fan, coolant three-way valves and liquid injection valve were PI or P controlled. The simulation results showed physical behavior that is realistic enough to apply for control algorithm design.

A study on the weld nugget formation in resistance spot welding of aluminum alloy (알루미늄 합금의 저항 점 용접시 용접너깃의 형성에 대한 연구)

  • 나석주;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.661-669
    • /
    • 1986
  • In this study, the resistance spot welding process of an aluminum alloy was analyzed through the numerical simulation including the electric contact resistance and the heat generation in the electrode. The finite element model was used to solve the electro-thermal responses in weld cycles. The resistance of the contact area was represented as the contact element modeling, but the thermal resistance between the contact surfaces was neglected. Welding tests of Alclad 2024-T3 aluminum alloy were made not only to get the input data for the numerical simulation, but also to compare the numerical results. The contact resistance was determined initially by the contact resistance tests and assumed to decay exponentially up to the solidus temperature. The temperature distributions and dynamic resistance obtained numerically were in good agreement with the experimental results. Numerical results revealed that nugget growth depends mainly on the heat generated in the workpiece and its contact area. The heat generated in the electrode has, however, only a little effect on the nugget growth, and the heat generation in the electrode-workpiece interface is initially high but decrease repidly.

Pair-Wise Serial ROIC for Uncooled Microbolometer Array

  • Haider, Syed Irtaza;Majzoub, Sohaib;Alturaigi, Mohammed;Abdel-Rahman, Mohamed
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.251-257
    • /
    • 2015
  • This work presents modelling and simulation of a readout integrated circuit (ROIC) design considering pair-wise serial configuration along with thermal modeling of an uncooled microbolometer array. A fully differential approach is used at the input stage in order to reduce fixed pattern noise due to the process variation and self-heating-related issues. Each pair of microbolometers is pulse-biased such that they both fall under the same self-heating point along the self-heating trend line. A ${\pm}10%$ process variation is considered. The proposed design is simulated with a reference input image consisting of an array of $127{\times}92$ pixels. This configuration uses only one unity gain differential amplifier along with a single 14-bit analog-to-digital converter in order to minimize the dynamic range requirement of the ROIC.

A Study on the Dynamic Characteristics of S/C Shipping Container Isolation System (다목적 실용위성2호의 운송 콘테이너 개발)

  • 우성현;김홍배;문상무;김영기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.933-939
    • /
    • 2001
  • A Satellite shipping container must afford the satellite a relatively benign thermal, vibration, and particle environment that is oblivious to the extreme temperatures, sand, dust, vibrations and shocks that can accompany the transportation. In this study, we have designed a vibration isolation system of a spacecraft container that will be used to transport a satellite called KOMPSAT (KOrea Multi-Purpose SATellite) -2 from KARI (Korea Aerospace Research Institute) Taejon to its launch site. To identify the dynamic characteristics of the system, a 1/3-scaled mockup of the container was developed. A large electro-magnetic shaker (Max. 240 KN) was used to excite the mockup, and vibration signals from 20 points were collected for modal tests. Numerical simulations through CATIA 3D Modeling were performed to identify the behavior of isolation springs. The results showed that a simplified model predicts the behavior in a reasonable accuracy. Moreover, the model guides us how to design a full-scaled satellite-shipping container.

  • PDF

Basic Modeling of Jeju Power System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 제주도 전력계통 기본 모델링)

  • Yoo, Hyun-Jae;Kim, Hak-Man;Park, Min-Won;Jung, Gyu-Won;Park, Jae-Se;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.404-405
    • /
    • 2011
  • In this paper, we present basic modeling of Juju power system using PSCAD/EMTDC. In detail, models of bipolar HVDC system, power transmission line, basic thermal power plant, load, and wind farm have been developed for Jeju power system. For evaluating basic dynamic behavior, we tested the system with a simple scenario and the test result showed acceptable response.

  • PDF

Dynamic Modeling of the Free Piston Stirling Pump for the Passive Safety Injection of the Next Generation Nuclear Power Plant (차세대 신형원자로의 피동형 안전 주입장치를 위한 프리피스톤 스터링 펌프의 동특성 모델)

  • Lee, Jae-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.149-154
    • /
    • 1999
  • This paper describes a passive safety injection system with free piston Stirling pump working withabundant decay heat in the nuclear reactor during the hypothetical accident. The water column in the tube assembly connected from the hot chamber to the cold chamber in the pump oscillates periodically due to thermal volume changes of non-condensable gas in each chamber. The oscillating pressure in the water column is converted into the pumping power with a suction-and-bleed type valve assembly. In this paper a dynamic model describing the frequency of oscillation and pumping pressure is developed. It was found that the pumping pressure is a function of the temperature difference between the chambers. Also, the frequency oscillation depends on the length of the tube with water column.

  • PDF

Small-scale effects on wave propagation in curved nanobeams subjected to thermal loadings based on NSGT

  • Ibrahim Ghoytasi;Reza Naghdabadi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.187-200
    • /
    • 2024
  • This study focuses on wave propagation analysis in the curved nanobeam exposed to different thermal loadings based on the Nonlocal Strain Gradient Theory (NSGT). Mechanical properties of the constitutive materials are assumed to be temperature-dependent and functionally graded. For modeling, the governing equations are derived using Hamilton's principle. Using the proposed model, the effects of small-scale, geometrical, and thermo-mechanical parameters on the dynamic behavior of the curved nanobeam are studied. A small-scale parameter, Z, is taken into account that collectively represents the strain gradient and the nonlocal parameters. When Z<1 or Z>1, the phase velocity decreases/increases, and the stiffness-softening/hardening phenomenon occurs in the curved nanobeam. Accordingly, the phase velocity depends more on the strain gradient parameter rather than the nonlocal parameter. As the arc angle increases, more variations in the phase velocity emerge in small wavenumbers. Furthermore, an increase of ∆T causes a decrease in the phase velocity, mostly in the case of uniform temperature rise rather than heat conduction. For verification, the results are compared with those available for the straight nanobeam in the previous studies. It is believed that the findings will be helpful for different applications of curved nanostructures used in nano-devices.

Design and dynamic simulation of a molten salt THS coupled to SFR

  • Areai Nuerlan;Jin Wang;Jun Yang;Zhongxiao Guo;Yizhe Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1135-1144
    • /
    • 2024
  • With the increasing ratio of renewables in the grid, a low-carbon and stable base load source that also is capable of load tracking is in demand. Sodium cooled fast reactors (SFRs) coupled to thermal heat storage system (THS) is a strong candidate for the need. This research focuses on the designing and performance validation of a two-tank THS based on molten salt to integrate with a 280 MWth sodium cooled fast reactor. Designing of the THS includes the vital component, sodium-to-salt heat exchanger which is a technology gap that needs to be filled, and designing and parameter selection of the tanks and related pumps. Modeling of the designed THS is conducted followed by the description of operation strategies and control logics of the THS. Finally, the dynamic simulation of the designed THS is conducted based on Fortran. Results show, the proposed power system meets the need of the design requirements to store heat for 18 h during a day and provide 500 MWth for peak demand for the rest of the day.

Numerical Modeling of Hydrazine-Fueled Arcjet Thruster (하이드라진(N2H4) 아크젯 추력기의 수치적 모델링)

  • Shin, Jae-Ryul;Lee, Dae-Sung;Oh, Se-Jong;Choi, J.-Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.907-915
    • /
    • 2008
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. the Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optical thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition thermo-physical process inside the arcjet thruster is understood from the flow field results.