• 제목/요약/키워드: thermal and dynamic modeling

검색결과 85건 처리시간 0.026초

이동하는 열탄성 보-평판의 진동에 대한 스펙트럴요소 해석 (An Axially Moving Thermoelastic Beam-plate: Spectral Element Modeling and Analysis)

  • 권경수;조주용;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.344-349
    • /
    • 2005
  • The axially moving thin beam-plates exposed to sudden thermal loadings may experience severe vibrations through the thermal shock process. For accurate prediction of the thermal shock-induced vibrations, this paper develops a spectral element model for axially moving thermoelastic beam-plates. The spectral element model which is represented by spectral element matrix is formulated from the frequency-dependent dynamic shape functions which satisfy the governing equations in the frequency-domain. Thus, when compared with the classical finite element model in which simple polynomial functions are used as the shape functions, the spectral element model can provide exact solution by treating a whole uniform structure member as a single finite element, regardless of its length.

  • PDF

한강 수계에서의 다차원 시변화 수리.수온 모델 연구 (Multidimensional Hydrodynamic and Water Temperature Modeling of Han River System)

  • 김은정;박석순
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.866-881
    • /
    • 2012
  • Han River is a complex water system consisting of many lakes. The water quality of Lake Paldang is significantly affected by incoming flows, which are the South and North branches of the Han River, and the Kyungan Stream. In order to manage the water quality of the Lake Paldang, we should consider the entire water body where the incoming flows are included. The objectives of this study are to develop an integrated river and lake modeling system for Han River system using a multidimensional dynamic model and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using field measurement data obtained in 2007 and 2008. The model showed satisfactory performance in predicting temporal variations of water level, flow rate and temperature. The Root Mean Square Error (RMSE) for water temperature simulation were $0.88{\sim}2.13^{\circ}C$ (calibration period) and $1.05{\sim}2.00^{\circ}C$ (verification period) respectively. And Nash-Sutcliffe Efficiency (NSE) for water temperature simulation were 1089~0.98 (calibration period) and 0.90~0.98 (verification period). Utilizing the validated model, we analyzed the spatial and temporal distributions of temperature within Han River system. The variations of temperature along the river reaches and vertical thermal profiles for each lakes were effectively simulated with developed model. The suggested modeling system can be effectively used for integrated water quality management of water system consisting of many rivers and lakes.

자연순환형 태양열 온수기 축열조의 압력식 설계 개조 (Design Modification of a Thermal Storage Tank of Natural-Circulation Solar Water Heater for a Pressurized System)

  • 부준홍;정의국
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.45-54
    • /
    • 2007
  • For a conventional natural-circulation type solar water heater, the pressure head is limited by the height between the storage tank and hot water tap. Therefore, it is difficult to provide sufficient hot water flow rate for general usage. This study deals with a design modification of the storage tank to utilize the tap-water pressure to increase hot-water supply Based on fluid dynamic and heat transfer theories, a series of modeling and simulation is conducted to achieve practical design requirements. An experimental setup is built and tested and the results are compared with theoretical simulation model. The storage tank capacity is 240 l and the outer diameter of piping was 15 mm. Number of tube turns tested are 5, 10, and 15. Starting with initial storage tank temperature of $80^{\circ}C$, the temperature variation of the supply hot water is investigated against time, while maintaining minimum flow rate of 10 1/min. Typical results show that the hot water supply of minimum $30^{\circ}C$ can be maintained for 34 min with tap-water supply pressure of 2.5 atm, The relative errors between modeling and experiments coincide well within 10% in most cases.

고온형 고분자전해질 연료전지의 준3차원 모델링을 통한 국부적 동특성 해석에 관한 연구 (A Study on the Local Dynamic Characteristics of High Temperature Proton Exchange Membrane Fuel Cell by Quasi-three-dimensional Model)

  • 박재만;민경덕;강상규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.81.1-81.1
    • /
    • 2011
  • High temperature proton exchange membrane fuel cell (HT-PEMFC) has been regarded as a promising clean energy sources. In this study, a quasi-three-dimensional dynamic model of HT-PEMFC has been developed and the local dynamic characteristics are investigated. The model has the geometrical simplification of 2+1D reduction (quasi-3D). The one-dimensional model consists of nine control volumes in cross-sectional direction to solve the energy conservation and the species conservation equations. Then, the one-dimensional model is discretized into 25 local sections along the gas flow direction to account for gas and thermal transport in channels. With this discretization, the local characteristics of HT-PEMFC such as species conservation, temperature, and current density can be captured. In order to study the basic characteristics of HT-PEMFC, it is important to investigate the local dynamic characteristics. Thus, the model is simulated at various operating conditions and the local dynamic characteristics related to them are observed. The model is useful to investigate the distribution of HT-PEMFC characteristics and the physical phenomena in HT-PEMFC.

  • PDF

초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가 (Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk)

  • 차도진;김동권;김영득;배원병;조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF

Optimization of three small-scale solar membrane distillation desalination systems

  • Chang, Hsuan;Hung, Chen-Yu;Chang, Cheng-Liang;Cheng, Tung-Wen;Ho, Chii-Dong
    • Membrane and Water Treatment
    • /
    • 제6권6호
    • /
    • pp.451-476
    • /
    • 2015
  • Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving the energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum-cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo steady state approach for equipment sizing and the dynamic optimization using overall system mathematical models. The s-SMDDS employing three MD configurations, including the air gap (AGMD), direct contact (DCMD) and vacuum (VMD) types, are optimized. The membrane area of each system is $11.5m^2$. The AGMD system operated for 500 kg/day water production rate gives the lowest unit cost of $5.92/m^3$. The performance ratio and recovery ratio are 0.85 and 4.07%, respectively. For the commercial membrane employed in this study, the increase of membrane mass transfer coefficient up to two times is beneficial for cost reduction and the reduction of membrane heat transfer coefficient only affects the cost of the DCMD system.

열 증기 압축기 내의 유동해석을 통한 설계 인자들의 영향 분석 (Appraisement of Design Parameters through Fluid Dynamic Analysis in Thermal Vapor Compressor)

  • 박일석;김홍원;김양규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.155-158
    • /
    • 2002
  • In general, TVC(Thermal Vapor Compressor) is used to boost/compress a low pressure vapor to a higher pressure for further utilization. The one-dimensional method is simple and reasonably accurate, but cannot realize the detail as like the back flow and recirculation in the mixing chamber, viscous shear effect, and etc. In this study, the axisymmetric How simulations have been performed to reveal the detailed flow characteristics for the various ejector shapes. The Navier-Stokes and energy equations are solved together with the continuity equation In the compressible flow fields. The standard $k-{\epsilon}$ model is selected for the turbulence modeling. The commercial computational fluid dynamic code FLUENT software is used for the simulation. The results contain the entrainment ratio under the various motive, suction and discharge pressure conditions. The numerical results are compared with the experimental data, and the comparison shows the good agreement. The three different flow regimes (double chocking, single chocking and back flow) have been clearly distinguished according to each boundary pressure values. Also the effects of the various shape variables (nozzle position, nozzle outlet diameter, mixing tube diameter, mixing tube converging angle, and etc.) are quantitatively discussed.

  • PDF

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

맥동 연소식 온수기의 모델링 (Modeling of a pulse combustion water heater)

  • 이관수;김창기
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.982-990
    • /
    • 1987
  • 본 연구에서는 참고문헌(12)에서 배제된 머플러와 플래퍼밸브의 운동을 추가 시킴으로써 앞의 모델보다 실제장치에 근접시켜 보다 정확한 열적 및 동적거동을 예측 하고, 또한 컴퓨터 시뮬레이션의 수행시 계산시간을 줄여 정상운전상태의 결과를 얻고 자 한다.

Convection Heat Transfer Coefficient of a Meat Cube in a Continuous Flow Sterilizing System

  • Hong, Ji-Hyang;Han, Young-Joe;Chung, Jong-Hoon
    • Food Science and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.328-333
    • /
    • 2005
  • Finite difference model and dynamic thermal property evaluation system were developed to estimate convection heat transfer coefficient by modeling temperature-time profile of beef cube in continuous flow sterilizing system. As input parameters of the model, specific heat and thermal conductivity values of beef frankfurter meat were independently measured from 20 to $80^{\circ}C$. Convection heat transfer coefficient was estimated by comparing simulated and measured temperature-time profiles. Actual temperature-time profiles of meat cube were measured at flow rates of 15, 30, and 45 L/min and viscosities from 0 to 15 cp, and mean values of convection heat transfer coefficients ranged from 792 to $2107\;W/m^2{\cdot}K$. Convection heat transfer coefficient increased with increase in flow rate and decreased as viscosity increased.