• Title/Summary/Keyword: thermal activation

Search Result 778, Processing Time 0.039 seconds

The Characteristics for BNCT facility in Hanaro Reactor

  • Soheigh Suh;Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Yoo, Seong-Yul;Rhee, Chang-Hun;Rhee, Soo-Yong;Jun, Byung-Jin
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.161-163
    • /
    • 2002
  • The BNCT(Boron Neutron Capture Therapy) facility has been developed in Hanaro(High-flux Advanced Neutron Application Reactor), a research reactor of Korea Atomic Energy Research Institute. A typical tangenial beam port is utilized with this BNCT facility. Thermal neutrons can be penetrated within the limits of the possible maximum instead of being filtered fast neutrons and gamma rays as much as possible using the silicon and bismuth single crystals. In addition to, the liquid nitrogen (LN$_2$) is used to cool down the silicon and bismuth single crystals for the increase of the penetrated thermal neutron flux. Neutron beams for BNCT are shielded using the water shutter. The water shutter was designed and manufactured not to interfere with any other subsystem of Hanaro when the BNCT facility is operated. Also, it is replaced with conventional beam port plug in order to cut off helium gas leakage in the beam port. A circular collimator, composed of $\^$6/Li$_2$CO$_3$ and polyethylene compounds, is installed at the irradiation position. The measured neutron flux with 24 MW reactor power using the Au-198 activation analysis method is 8.3${\times}$10$\^$8/ n/cm$^2$ s at the collimator, exit point of neutron beams. Flatness of neutron beams is proven to ${\pm}$ 6.8% at 97 mm collimator. According to the result of acceptance tests of the water shutter, the filling time of water is about 190 seconds and drainage time of it is about 270 seconds. The radiation leakages in the irradiation room are analyzed to near the background level for neutron and 12 mSv/hr in the maximum for gamma by using BF$_3$ proportional counter and GM counter respectively. Therefore, it is verified that the neutron beams from BNCT facility in Hanaro will be enough to utilize for the purpose of clinical and pre-clinical experiment.

  • PDF

Free-Radical Polymerization and Copolymerization of N-Acetyl ${\alpha}$-Aminoacrylic Acid (N-Acetyl ${\alpha}$-aminoacrylic Acid의 자유라디칼 중합 및 혼성중합)

  • Il Hyun Park;Chong Kwnag Lee;Jae Ho Choi;Jung-Il Jin
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.235-246
    • /
    • 1982
  • The free radical polymerization and copolymerization of N-acetyl ${\alpha}$-aminoacrylic acid were investigated. From the result of kinetic investigation of N-acetyl ${\alpha}$-aminoacrylic acid in DMF at $60^{\circ}C$, a rate equation of $R_p$ = $k_p[M]^{0.97}[I]^{0.59}$ was obtained. The overall activation energy for the polymerization was found to be 25.2 kcal/mole. Copolymerization of N-acetyl ${\alpha}$-aminoacrylic acid with acrylic acid and styrene was carried out for the determination of monomer reactivity ratios. The monomer reactivity ratios for the monomer pairs determined at 70.0{\pm}0.1^{\circ}C$ using benzoyl peroxide as an initiator are; $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.49, $r_2$(acrylic acid) = 1.41, $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.44, $r_2$(styrene) = 0.91. The values of Alfrey-Price's Q and e parameters for N-acetyl ${\alpha}$-aminoacrylic acid were calculated to be 0.51 and 0.16 for the both systems. Differential thermal analysis and thermogravimetry showed that acrylic acid copolymers have poorer thermal stability as compared with the homopolymer of N-acetyl ${\alpha}$-aminoacrylic acid.

  • PDF

Out-of-Pile Test for Yielding Behavior of PWR Fuel Cladding Material (노외 실험을 통한 가압경수형 핵연료 피복재의 항복거동연구)

  • Yi, Jae-Kyung;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.22-33
    • /
    • 1987
  • The confirmed integrity of nuclear fuel cladding materials is an important object during steady state and transient operations at nuclear power plant. In this context, the clad material yielding behavior is especially important because of pellet-clad gap expansion. During the steep power excursion, the in-pile irradiation behavior differences between uranium-dioxide fuel pellet and zircaloy clad induce the contact pressure between them. If this pressure reaches the zircaloy clad yield pressure, the zircaloy clad will be plastically deformed. After the reactor power resumed to normal state, this plastic permanent expansion of clad tube give rise to the pellet-clad gap expansion. In this paper, the simple mandrel expansion test method which utilizes thermal expansion difference between copper mandrel and zircaloy tube was adopted to simulate this phenomenon. That is, copper mandrel which has approximately three times of thermal expansion coefficient of zircaloy-4 (PWR fuel cladding material) were used in this experiment at the temperature range from 400C to 700C. The measured plastic expansion of zircaloy outer radius and derived mathematical relations give the yield pressure, yield stress of zircaloy-4 clad at the various clad wall temperatures, the activation energy of zircaloy tube yielding, and pellet-clad gap expansion. The obtained results are in good agreement with previous experimental results. The mathematical analysis and simple test method prove to be a reliable and simple technique to assess the yielding behavior and gap expansion measurement between zircaloy-4 tube and uranium-dioxide fuel pellet under biaxial stress conditions.

  • PDF

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

Rapid Fermentation of Fish Sauce and Its Kinetics (어장유의 속성발효와 동력학적 고찰)

  • KIM Byeong-Sam;PARK Sang-Min;CHOI Soo-Il;KIM Chang-Yang;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.10-19
    • /
    • 1986
  • A study on the rapid fermentation of fish sauce has been carried out for effective utilization of sardine. The frozen sardine was thawed at room temperature, chopped, homogenized with equal amount of water and then hydrolyzed by addition of commercial proteolytic enzymes such as bromelain, papaya protease, ficin and a enzyme mixture under different conditions of hydrolysis. The effect of wheat gluten for masking fishy odor and color development during thermal treatment were also tested. The reaction mixture was heated for 30 minutes at $100^{\circ}C$ for enzyme inactivation, pasteurization and color development and then centrifuged for 20 minutes at 4,000 rpm. Finally, table salt and benzoic acid were added for bacteriostatic effect. The results were summarized as follows ; 1. The hydrolyzing temperature, time, pH and the concentration of enzymes based on the weight of whole sardine for optimal hydrolysis were as follows: autolysis, $52.5^{\circ}C$, 4 hours, pH 8.0: with $0.25\%$ bromelain, $52.5^{\circ}C$, 4 hours, pH 6.6 :with $0.25\%$ ficin, $52.5^{\circ}C$, 4 hours, pH 6.8: with $0.3\%$ papaya protease, $52.5^{\circ}C$, 4 hours, pH 6.6: with $6\%$ enzyme mixture, $52.5^{\circ}C$, 4 hours, pH 6.9, respectively. But pH control was not much beneficial in increasing yield. 2. The hydrolytic reaction of chopped sardine with proteolytic enzymes could be interpreted as a first order reaction that devided into 2 periods with different reaction rate constsnts. $Q_{10}$ values of the first period prior to 4 hours were 1.23 to 1.31, and those of post 4 hours were 1.25 to 1.55. The corresponding activation energies were $1.81{\times}10^4\;to\;2.34{\times}10^4\;kJ/kmol$ and $1.92{\times}10^4\;to\;3.77{\times}10^4\;kJ/kmol$, respectively. 3. The reasonable amount of $75\%$ vital wheat gluten for addition was $9\%$ of chopped sardine. 4. The dark brown color was mainly developed during the thermal treatment for 30 minutes at $100^{\circ}C$ and not changed during storage.

  • PDF

Electrical Properties of Ultra-shallow$p^+-n$ Junctions using $B_{10}H_{14}$ ion Implantation ($B_{10}H_{14}$ 이온 주입을 통한 ultra-shallow $p^+-n$ junction 형성 및 전기적 특성)

  • 송재훈;김지수;임성일;전기영;최덕균;최원국
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Fabricated were ultra-shallow $p^+-n$ junctions on n-type Si(100) substrates using decaborane $(B_{10}H_{14})$ ion implantation. Decaborane ions were implanted at the acceleration voltages of 5 kV to 10 kV and at the dosages of $1\times10^{12}\textrm{cm}^2$.The implanted specimens were annealed at $800^{\circ}C$, $900^{\circ}C$ and $1000^{\circ}C$ for 10 s in $N_2$ atmosphere through a rapid thermal process. From the measurement of the implantation-induced damages through $2MeV^4 He^{2+}$ channeling spectra, the implanted specimen at the acceleration voltage of 15 kV showed higher backscattering yield than those of the bare n-type Si wafer and the implanted specimens at 5 kV and 10 kV. From the channeling spectra, the calculated thicknesses of amorphous layers induced by the ioin implantation at the acceleration voltages of 5 kV, 10 kV and 15 kV were 1.9 nm, 2.5 nm and 4.3 nm, respectively. After annealing at $800^{\circ}C$ for 10 s in $N_2$ atmosphere, most implantation-induced damages of the specimens implanted at the acceleration voltage of 10 kV were recovered and they exhibited the same channeling yield as the bare Si wafer. In this case, the calculated thickness of the amorphous layer was 0.98 nm. Hall measurements and sheet resistance measurements showed that the dopant activation increased with implantation energy, ion dosage and annealing temperature. From the current-voltage measurement, it is observed that leakage current density is decreased with the increase of annealing temperature and implantation energy.

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

Allopurinol Decreases Liver Damage Induced by Dermal Scald Burn Injury (피부 화상으로 유도된 간 손상에서 Allopurinol의 효과)

  • Cho, Hyun-Gug;Yoon, Chong-Guk;Park, Won-Hark
    • Applied Microscopy
    • /
    • v.31 no.1
    • /
    • pp.37-47
    • /
    • 2001
  • In order to investigate a pathogenesis of liver damage induced by skin burn, thermal injury was induced by scald burn on entirely dorsal surface in rats (total burn surface area $20\sim25\%$) except for inhalated injury. At 5 and 24 h after scald burn, biochemical assay and morphological changes in serum and liver tissue were examined. Skin burn increased liver weight (% of body weight, p<0.05) and the activity of serum aniline amino-transferase (ALT, p<0.05), in addition, the activity of xanthine oxidase (XO), an enzyme of oxygen free radical generating system, was elevated (p<0.01) in serum, but not in skin and in liver. Postburn treatment of allopurinol intraperitoneally decreased liver weight, serum ALT activity and serum XO activity. Scald burn induced ultrastructurally swelling of endoplasmic reticulum, ribosome detachment, accumulation of lipid, dilatation of bile canaliculi and intercellular space, neutrophil infiltration, activation of Kupffer's cells and degeneration of hepatocytic microvilli. Futhermore , thermal injury decreased not only the protein concentration in plasma but also the number of intravascular leukocytes, that indicates induction of edema formation with protein exudation and inflammation by neutrophil infiltration into the internal organs. However allopurinol injection after burn inhibited post burn ultrastructural changes. These data suggest that acute dermal scald burn injury leads to liver damage, that is related to elevation of xanthine oxidase activity in serum. Xanthine oxidase may be a key role in the pathogenesis of liver damage induced by skin burn.

  • PDF

Kinetic Study on the Color Deterioration of Crude Anthocyanin Extract from Schizandra Fruit (Schizandra chinensis fructus) (오미자 색소 추출물의 가열 변색에 대한 속도론적 연구)

  • Cho, Sung-Bin;Kim, Hyun-Jung;Yoon, Jong-Il;Chun, Hyang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • The effects of temperature and pH on color deterioration of anthocyanin in Schizandra fruit (Schizandra chinensis fructus) were determined with temperature range of $80{\sim}100^{\circ}C$ and pH range of $2.0{\sim}5.0$. Browning index was used as an index of color deterioration of crude anthocyanin extract from Schizandra fruit. As pH of crude anthocyanin extract was increased, color deterioration was accelerated, showing pH-dependency of thermal stability of anthocyanin extract from Schizandra fruit. Anthocyanin degradation could be modeled as a second-order rate reaction, with rate of $3.2{\times}10^{-3}\;h^{-1}\;(pH\;2.0){\sim}4.1{\times}10^{-3}\;h^{-1}\;(pH\;5.0)\;at\;100^{\circ}C$. Temperature dependence of deterioration was described by the Arrhenius relationship. Activation energies for pH $2.0{\sim}5.0$ ranged from $24.87{\sim}42.54\;kJ/mol^{-1}$.

Transcriptional Response of Major Antioxidant Enzyme Genes to Heat Stress in Mud Loach (Misgurnus mizolepis) (고온 스트레스에 대한 미꾸라지(Misgurnus mizolepis) 항산화 효소 유전자들의 발현 특징)

  • Cho Young-Sun;Lee Sang-Yoon;Bang In-Chul;Kim Dong-Soo;Nam Yoon-Kwon
    • Journal of Aquaculture
    • /
    • v.19 no.3
    • /
    • pp.157-165
    • /
    • 2006
  • Expression of major antioxidant enzyme (AOE) including Cu/Zn superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione-S-transferase (GST) and 3 glutathione peroxidase isotypes (GPXs) at mRNA levels during heat stress was examined in mud loach (Misgurnus mizolepis) liver. Based on the semi-quantitative RT-PCR, real-time RT-PCR and/or northern dot blot hybridization, the antioxidant enzyme genes were generally up-regulated during elevation of water temperature from $23^{\circ}C$ up to $32^{\circ}C$. GPXs and SOD displayed the most significant elevation of mRNA levels (up to 3 and 2 folds, respectively) while CAT showed the steady-state expression irrespective of thermal conditions. GST represented the relatively moderate response (1.3-fold increase) in its transcription to thermal stress. The transcriptional activation of AOE genes was not significant at the treatment temperature lower than $29^{\circ}C$. Increased mRNA levels of GPX (extracellular form) and SOD genes in the fish exposed to $32^{\circ}C$ was readily detectable 1 day after exposure to heat stress.