• Title/Summary/Keyword: therapeutic strategy

Search Result 501, Processing Time 0.027 seconds

Phenotype Changes in Immune Cell Activation in Obesity (비만 환경 내 면역세포 활성화 표현형의 변화)

  • Ju-Hwi Park;Ju-Ock Nam
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • Immune and metabolic systems are important factors in maintaining homeostasis. Immune response and metabolic regulation are highly associated, so, when the normal metabolism is disturbed, the immune response changed followed the metabolic diseases occur. Likewise, obesity is highly related to immune response. Obesity, which is caused by an imbalance in energy metabolism, is associated with metabolic diseases, such as insulin resistance, type 2 diabetes, fatty liver diseases, atherosclerosis and hypertension. As known, obesity is characterized in chronic low-grade inflammation. In obesity, the microenvironment of immune cells became inflammatory by the unique activation phenotypes of immune cells such as macrophage, natural killer cell, T cell. Also, the immune cells interact each other in cellular or cytokine mechanisms, which intensify the obesity-induced inflammatory response. This phenomenon suggests the possibility of regulating the activation of immune cells as a pharmacological therapeutic strategy for obesity in addition to the common pharmacological treatment of obesity which is aimed at inhibiting enzymes such as pancreatic lipase and α-amylase or inhibiting differentiation of preadipocytes. In this review, we summarize the activation phenotypes of macrophage, natural killer cell and T cell, and their aspects in obesity. We also summarize the pharmacological substances that alleviates obesity by regulating the activation of immune cells.

Effects of long-term tubular HIF-2α overexpression on progressive renal fibrosis in a chronic kidney disease model

  • Dal-Ah Kim;Mi-Ran Lee;Hyung Jung Oh;Myong Kim;Kyoung Hye Kong
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.196-201
    • /
    • 2023
  • Renal fibrosis is the final manifestation of chronic kidney disease (CKD) regardless of etiology. Hypoxia-inducible factor-2 alpha (HIF-2α) is an important regulator of chronic hypoxia, and the late-stage renal tubular HIF-2α activation exerts protective effects against renal fibrosis. However, its specific role in progressive renal fibrosis remains unclear. Here, we investigated the effects of the long-term tubular activation of HIF-2α on renal function and fibrosis, using in vivo and in vitro models of renal fibrosis. Progressive renal fibrosis was induced in renal tubular epithelial cells (TECs) of tetracycline-controlled HIF-2α transgenic (Tg) mice and wild-type (WT) controls through a 6-week adenine diet. Tg mice were maintained on doxycycline (DOX) for the diet period to induce Tg HIF-2α expression. Primary TECs isolated from Tg mice were treated with DOX (5 ㎍/ml), transforming growth factor-β1 (TGF-β1) (10 ng/ml), and a combination of both for 24, 48, and 72 hr. Blood was collected to analyze creatinine (Cr) and blood urea nitrogen (BUN) levels. Pathological changes in the kidney tissues were observed using hematoxylin and eosin, Masson's trichrome, and Sirius Red staining. Meanwhile, the expression of fibronectin, E-cadherin and α-smooth muscle actin (α-SMA) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was observed using western blotting. Our data showed that serum Cr and BUN levels were significantly lower in Tg mice than in WT mice following the adenine diet. Moreover, the protein levels of fibronectin and E-cadherin and the phosphorylation of p38 MAPK were markedly reduced in the kidneys of adenine-fed Tg mice. These results were accompanied by attenuated fibrosis in Tg mice following adenine administration. Consistent with these findings, HIF-2α overexpression significantly decreased the expression of fibronectin in TECs, whereas an increase in α-SMA protein levels was observed after TGF-β1 stimulation for 72 hr. Taken together, these results indicate that long-term HIF-2α activation in CKD may inhibit the progression of renal fibrosis and improve renal function, suggesting that long-term renal HIF-2α activation may be used as a novel therapeutic strategy for the treatment of CKD.

Notoginseng leaf triterpenes ameliorates mitochondrial oxidative injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral ischemic model rats

  • Weijie, Xie;Ting, Zhu;Ping, Zhou;Huibo, Xu;Xiangbao, Meng;Tao, Ding;Fengwei, Nan;Guibo, Sun;Xiaobo, Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.199-209
    • /
    • 2023
  • Background: Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.

Research Trends on Compounds that Promote Melanin Production Related to Hair Graying (모발 백발화와 관련된 melanin 생성을 촉진시키는 화합물의 연구동향)

  • Moon-Moo Kim
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.445-454
    • /
    • 2023
  • Hair graying is the result of a malfunction in the signaling pathways that control melanogenesis, and it is activated by UV light, melanocyte-stimulating hormone (MSH), stem cell factor (SCF), Wnt, and endothelin-1 (ET-1). To prevent hair graying, synthetic and natural compounds can be used to stimulate melanogenesis effectively under the control of tyrosinase, tyrosine hydroxylase, tyrosinase-related protein-1 (TRP-1), TRP-2, and microphthalmia-associated transcription factor (MITF). This article describes a crucial strategy to resolve the problem of hair graying, as well as recent advances in the signaling pathway related to melanogenesis and hair graying. In particular, the article reviews potentially effective therapeutic agents that promote melanogenesis, such as antioxidants that modulate catalase, methionine sulfoxide reductase, and sirtuin 1 (SIRT1) activators including resveratrol, fisetin, quercetin, and ginsenoside. It also discusses vitiligo inhibitors, such as corticosteroids, calcineurin inhibitors, and palmitic acid methyl ester, as well as activators of telomerase expression and activity, including estrogen, androgen, progesterone, and dihydrotestosterone. Furthermore, it explores compounds that can inhibit hair graying, such as latanoprost, erlotinib, imatinib, tamoxifen, and levodopa. In conclusion, this article focuses on recent research trends on compounds that promote melanin production related to hair graying.

Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD

  • Zehong Yang;Yuanyuan Yu ;Nannan Sun;Limian Zhou;Dong Zhang;HaiXin Chen ;Wei Miao ;Weihang Gao ;Canyang Zhang ;Changhui Liu ;Xiaoying Yang ;Xiaojie Wu ;Yong Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.376-384
    • /
    • 2023
  • Background: Hepatic lipid disorder impaired mitochondrial homeostasis and intracellular redox balance, triggering development of non-alcohol fatty liver disease (NAFLD), while effective therapeutic approach remains inadequate. Ginsenosides Rc has been reported to maintain glucose balance in adipose tissue, while its role in regulating lipid metabolism remain vacant. Thus, we investigated the function and mechanism of ginsenosides Rc in defending high fat diet (HFD)-induced NAFLD. Methods: Mice primary hepatocytes (MPHs) challenged with oleic acid & palmitic acid were used to test the effects of ginsenosides Rc on intracellular lipid metabolism. RNAseq and molecular docking study were performed to explore potential targets of ginsenosides Rc in defending lipid deposition. Wild type and liver specific sirtuin 6 (SIRT6, 50721) deficient mice on HFD for 12 weeks were subjected to different dose of ginsenosides Rc to determine the function and detailed mechanism in vivo. Results: We identified ginsenosides Rc as a novel SIRT6 activator via increasing its expression and deacetylase activity. Ginsenosides Rc defends OA&PA-induced lipid deposition in MPHs and protects mice against HFD-induced metabolic disorder in dosage dependent manner. Ginsenosides Rc (20mg/kg) injection improved glucose intolerance, insulin resistance, oxidative stress and inflammation response in HFD mice. Ginsenosides Rc treatment accelerates peroxisome proliferator activated receptor alpha (PPAR-α, 19013)-mediated fatty acid oxidation in vivo and in vitro. Hepatic specific SIRT6 deletion abolished ginsenoside Rc-derived protective effects against HFD-induced NAFLD. Conclusion: Ginsenosides Rc protects mice against HFD-induced hepatosteatosis by improving PPAR-α-mediated fatty acid oxidation and antioxidant capacity in a SIRT6 dependent manner, and providing a promising strategy for NAFLD.

Synergistic Anti-Tumor Effect by the Combination of Cyclophosphamide and Dendritic Cell Vaccination in Murine Tumor Model that CEA Expressing (CEA 발현 마우스 종양모델에서 Cyclophosphamide와 수지상세포 백신의 병합치료에 의한 상승적인 항종양 효과)

  • Park, Mi-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.1
    • /
    • pp.38-48
    • /
    • 2022
  • Carcinoembryonic antigen (CEA) is an oncofetal antigen primarily detected in the peripheral blood of cancer patients, particularly in those with colorectal cancer. CEA is considered a valuable target for antigen-specific immunotherapy. In this study, we induced the anti-tumor immunity for CEA through the administration of a dendritic cell (DC) vaccine. However, there was a limitation in inducing tumor regression in the DC vaccinated mice. To enhance the efficacy of anti-tumor immunity in MC38/CEA2 tumor-bearing mice, we evaluated the effects of DC vaccine in combination with cyclophosphamide (CYP). Administration of CYP 100 mg/kg in mice resulted in significant inhibition of tumor growth in the 2-day tumor model, whereas a lower inhibition of tumor growth was seen in the 10-day tumor model. Therefore, the 10-day tumor model was selected for testing chemo-immunotherapy. The combined CYP and DC vaccine not only increased tumor antigen-specific immune responses but also induced synergistic anti-tumor immunity. Furthermore, the adverse effects of CYP such as weight loss and immunosuppression by regulatory T cells and myeloid-derived suppressor cells showed a significant reduction in the combined chemo-immunotherapy treatment compared with CYP alone. Our data suggest that chemoimmunotherapy with the DC vaccine may offer a new therapeutic strategy to induce a potent anti-tumor effect and reduce the adverse effects of chemotherapy.

Effect of treadmill exercise on apoptosis in the retinas of streptozotocin-induced diabetic rats (트레드밀 운동이 streptozotocin에 의해 유발된 당뇨 쥐의 망막 신경세포 사멸에 미치는 영향)

  • Kim, D.Y.;Jung, S.Y.;Kim, T.W.;Sung, Y.H.
    • Exercise Science
    • /
    • v.21 no.3
    • /
    • pp.289-298
    • /
    • 2012
  • In the present study, we investigated the effect of treadmill exercise on apoptotic neuronal cell death in the retinas of streptozotocin-induced diabetic rats. Twenty-eight male Sprague-Dawley rats were used for this study. The animals were divided into four groups(n = 7 in each group):(1) control group, (2) exercise group, (3) diabetes-induced group, (4) diabetes-induced and exercise group. Diabetes mellitus(DM) was induced by intraperitoneal injection of streptozotocin. The rats in the exercise groups were forced to run on the treadmill for 30 minutes once a day, five times per a week, during 12 weeks. In this study, a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL) assay and western blot for the expressions of caspase-3, cytochrome c, Bax, and Bcl-2 in the retinas were conducted for the detection of apoptotic retinal cell death. The present results showed that the number of TUNEL-positive cells was increased in the retinas of the diabetic rats, whereas treadmill exercise suppressed this number. The expressions of pro-apoptotic factors caspase-3, cytochrome c, and Bax were enhanced and the expressions of anti-apoptotic factor Bcl-2 was decreased in the retinas of the diabetic rats. In contrast, treadmill exercise suppressed the expressions of caspase-3, cytochrome c, and Bax and increased the expression of Bcl-2. The present study demonstrated that treadmill exercise suppressed diabetes-induced apoptotic neuronal cell death in the retinas. Based on the present results, treadmill exercise may be effective therapeutic strategy for the alleviating complications of diabetes patients.

Synergistic Inhibition of Burkitt's Lymphoma with Combined Ibrutinib and Lapatinib Treatment (Ibrutinib과 Lapatinib 병용 치료에 의한 버킷림프종의 상호 작용적 억제)

  • Chae-Eun YANG;Se Been KIM;Yurim JEONG;Jung-Yeon LIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.298-305
    • /
    • 2023
  • Burkitt's lymphoma is a distinct subtype of non-Hodgkin's lymphoma originating from B-cells that is notorious for its aggressive growth and association with immune system impairments, potentially resulting in rapid and fatal outcomes if not addressed promptly. Optimizing the use of Food and Drug Administration-approved medications, such as combining known safe drugs, can lead to time and cost savings. This method holds promise in accelerating the progress of novel treatments, ultimately facilitating swifter access for patients. This study explores the potential of a dual-targeted therapeutic strategy, combining the bruton tyrosine kinase-targeting drug Ibrutinib and the epidermal growth factor receptor/human epidermal growth factor receptor-2-targeting drug Lapatinib. Ramos and Daudi cell lines, well-established models of Burkitt's lymphoma, were used to examine the impact of this combination therapy. The combination of Ibrutinib and Lapatinib inhibited cell proliferation more than using each drug individually. A combination treatment induced apoptosis and caused cell cycle arrest at the S and G2/M phases. This approach is multifaceted in its benefits. It enhances the efficiency of the drug development timeline and maximizes the utility of currently available resources, ensuring a more streamlined and resource-effective research process.

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

Clinical Characteristics and Treatment Results of Neuroendocrine Carcinoma of Uterine Cervix (자궁경부 신경내분비암의 임상적 특징과 치료 결과)

  • Kim, Ok-Bae;Kim, Jin-Hee;Cha, Soon-Do;Choi, Tae-Jin;Ye, Ji-Won
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.124-129
    • /
    • 2004
  • Purpose : To evaluate the clinical findings, prognosis and treatment strategy of patients with neuroendocrine carcinoma of cervix. Materials and Methods: Thirteen patients with neuroendocrine carcinoma of cervix were included in this study, as confirmed histologically and immunohistochemically at the Dongsan Medical Center, Keimyung University, between May 1944 and October 2001. The mean age of patients was 56 years with a range of 32 to 78 years of age. According to the FIGO staging system, there were 5 patients with stage IB carcinoma, 5 patients with IIA, and 3 patients with stage IIB. Four patients underwent radical hysterectomy with pelvic lymphadenectomy, 3 of these patients also received postoperative radiotherapy, and one patient underwent extrafascial hysterectomy after radiotherapy. Primary radiotherapy was done in 9 patients, and 3 were irradiated postoperatively. Nine patients received chemotherapy, 7 received neoadjuvant and 2 received concurrent chemoradiotherapy. The radical purpose of radiotherapy consisted of external irradiation to the whole pelvis (4,500 $\~$5,400 cGy) and intracavitary irradiation (3,000 $\~$ 3,500 cGy). Results : The mean follow up duration was 36 months with a range of 3 to 104 months. The overall 5-year survival rate was 61.5$\%$ and the 5-year survival rates for stage IB, IIA, IIB were 60.0$\%$, 60.0$\%$, and 66.7$\%$ respectively (p=0.99). Eight patients are still alive without disease, and all of the 5 patients with recurrence are dead due to distant metastasis. Conclusion : Neuroendocrine carcinoma of cervix is highly aggressive, with early lymphatic dissemination and a high rate of distant recurrence. Therefore, an aggressive therapeutic strategy Is required to obtain pelvic and distant disease control. Multimodal therapy should be considered at the time of Initial diagnosis.