• 제목/요약/키워드: therapeutic evidence

검색결과 618건 처리시간 0.023초

호흡계 질환의 물리치료적 접근방법 (Physical Therapy Approaches for Respiratory Diseases)

  • 김기송
    • 대한물리치료과학회지
    • /
    • 제16권3호
    • /
    • pp.67-74
    • /
    • 2009
  • Background: Various functional factors should be incorporated during assessment and intervention for patient rehabilitation. Stable respiratory function is one of required factors for functional restoration. To maximize respiratory physical therapy intervention outcome, it is required to understand clinical features of respiratory diseases and physical therapy approaches. Methods: Previous studies were systematically reviewed through computerized search. Methodological qualities of selected studies were evaluated and the levels of recommendations were determined. Results: Assessment for respiratory pattern and thoracic mobility is of importance to improve cardiopulmonary fitness during physical reconditioning. Application of optimal therapeutic protocol can increase thoracic mobility and respiratory function. Interdisciplinary communication is critical during rehabilitation for respiratory patients. Health care provider should have professional knowledge and experience for cardiopulmonary fitness and obligation to endeavor for patients' respiratory rehabilitation. It is necessary to standardize therapeutic intervention, and rehabilitative respiratory exercise should be applied to confirm the effects of intervention. Conclusion: Respiratory diseases that may reduce patients' quality of life and cardiopulmonary fitness should be resolved through physical therapy approaches. Through conducting research, effect of evidence-based and patients' function-oriented intervention can be determined.

  • PDF

Emerging roles of exosomes in cancer invasion and metastasis

  • Soung, Young Hwa;Nguyen, Thalia;Cao, Hans;Lee, Janet;Chung, Jun
    • BMB Reports
    • /
    • 제49권1호
    • /
    • pp.18-25
    • /
    • 2016
  • Recent evidence has indicated that nano-sized vesicles called "exosomes" mediate the interaction between cancer cells and their microenvironment and play a critical role in the development of cancers. Exosomes contain cargo consisting of proteins, lipids, mRNAs, and microRNAs that can be delivered to different types of cells in nascent as well as distant locations. Cancer cell-derived exosomes (CCEs) have been identified in body fluids such as urine, plasma, and saliva from patients with cancer. Although their content depends on tumor type and stage, CCEs merit consideration as prognostic and diagnostic markers, as vehicles for drug delivery, and as potential therapeutic targets because they could transport various oncogenic elements. In this review, we summarize recent advances regarding the role of CCEs in cancer invasion and metastasis, as well as its potential clinical applications. [BMB Reports 2016; 49(1): 18-25]

Apelin-APJ Signaling: a Potential Therapeutic Target for Pulmonary Arterial Hypertension

  • Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.196-201
    • /
    • 2014
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by the vascular remodeling of the pulmonary arterioles, including formation of plexiform and concentric lesions comprised of proliferative vascular cells. Clinically, PAH leads to increased pulmonary arterial pressure and subsequent right ventricular failure. Existing therapies have improved the outcome but mortality still remains exceedingly high. There is emerging evidence that the seven-transmembrane G-protein coupled receptor APJ and its cognate endogenous ligand apelin are important in the maintenance of pulmonary vascular homeostasis through the targeting of critical mediators, such as Kr$\ddot{u}$ppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and microRNAs (miRNAs). Disruption of this pathway plays a major part in the pathogenesis of PAH. Given its role in the maintenance of pulmonary vascular homeostasis, the apelin-APJ pathway is a potential target for PAH therapy. This review highlights the current state in the understanding of the apelin-APJ axis related to PAH and discusses the therapeutic potential of this signaling pathway as a novel paradigm of PAH therapy.

Kidney protective potential of lactoferrin: pharmacological insights and therapeutic advances

  • Zahan, Md. Sarwar;Ahmed, Kazi Ahsan;Moni, Akhi;Sinopoli, Alessandra;Ha, Hunjoo;Uddin, Md Jamal
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.1-13
    • /
    • 2022
  • Kidney disease is becoming a global public health issue. Acute kidney injury (AKI) and chronic kidney disease (CKD) have serious adverse health outcomes. However, there is no effective therapy to treat these diseases. Lactoferrin (LF), a multi-functional glycoprotein, is protective against various pathophysiological conditions in various disease models. LF shows protective effects against AKI and CKD. LF reduces markers related to inflammation, oxidative stress, apoptosis, and kidney fibrosis, and induces autophagy and mitochondrial biogenesis in the kidney. Although there are no clinical trials of LF to treat kidney disease, several clinical trials and studies on LF-based drug development are ongoing. In this review, we discussed the possible kidney protective mechanisms of LF, as well as the pharmacological and therapeutic advances. The evidence suggests that LF may become a potent pharmacological agent to treat kidney diseases.

The complex role of extracellular vesicles in HIV infection

  • Jung-Hyun Lee
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.335-340
    • /
    • 2023
  • During normal physiological and abnormal pathophysiological conditions, all cells release membrane vesicles, termed extracellular vesicles (EVs). Growing evidence has revealed that EVs act as important messengers in intercellular communication. EVs play emerging roles in cellular responses and the modulation of immune responses during virus infection. EVs contribute to triggering antiviral responses to restrict virus infection and replication. Conversely, the role of EVs in the facilitation of virus spread and pathogenesis has been widely documented. Depending on the cell of origin, EVs carry effector functions from one cell to the other by horizontal transfer of their bioactive cargoes, including DNA, RNA, proteins, lipids, and metabolites. The diverse constituents of EVs can reflect the altered states of cells or tissues during virus infection, thereby offering a diagnostic readout. The exchanges of cellular and/or viral components by EVs can inform the therapeutic potential of EVs for infectious diseases. This review discusses recent advances of EVs to explore the complex roles of EVs during virus infection and their therapeutic potential, focusing on HIV-1.

Early Biologic Treatment in Pediatric Crohn's Disease: Catching the Therapeutic Window of Opportunity in Early Disease by Treat-to-Target

  • Kang, Ben;Choe, Yon Ho
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 2018
  • The emergence of mucosal healing as a treatment goal that could modify the natural course of Crohn's disease and the accumulating evidence showing that biologics are most effective in achieving mucosal healing, along with the success of early treatment regimens for rheumatoid arthritis, have led to the identification of early Crohn's disease and development of the concept of catching the therapeutic window during the early disease course. Thus, an increasing number of pediatric gastroenterologists are adopting an early biologic treatment strategy with or without an immunomodulator. Although early biologic treatment is effective, cost and overtreatment are issues that limit its early use. Currently, there are insufficient data on who will benefit most from early biologics, as well as on who will not need early or even any biologics. For now, top-down biologics should be considered for patients with currently known high-risk factors of poor outcomes. For other patients, close, objective monitoring and accelerating the step-up process by means of a treat-to-target approach seems the best way to catch the therapeutic window in early pediatric Crohn's disease. The individual benefits of immunomodulator addition during early biologic treatment should be weighed against its risks and decision on early combination treatment should be made after comprehensive discussion with each patient and guardian.

Glyoxalase 1 as a Therapeutic Target in Cancer and Cancer Stem Cells

  • Ji-Young, Kim;Ji-Hye, Jung;Seung-Joon, Lee;Seon-Sook, Han;Seok-Ho, Hong
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.869-876
    • /
    • 2022
  • Methylglyoxal (MG) is a dicarbonyl compound formed in cells mainly by the spontaneous degradation of the triose phosphate intermediates of glycolysis. MG is a powerful precursor of advanced glycation end products, which lead to strong dicarbonyl and oxidative stress. Although divergent functions of MG have been observed depending on its concentration, MG is considered to be a potential antitumor factor due to its cytotoxic effects within the oncologic domain. MG detoxification is carried out by the glyoxalase system. Glyoxalase 1 (Glo1), the ubiquitous glutathionedependent enzyme responsible for MG degradation, is considered to be a tumor promoting factor due to it catalyzing the removal of cytotoxic MG. Indeed, various cancer types exhibit increased expression and activity of Glo1 that closely correlate with tumor cell growth and metastasis. Furthermore, mounting evidence suggests that Glo1 contributes to cancer stem cell survival. In this review, we discuss the role of Glo1 in the malignant progression of cancer and its possible use as a promising therapeutic target for tumor therapy. We also summarize therapeutic outcomes of Glo1 inhibitors as prospective treatments for the prevention of cancer.

신경아교세포와 조현병 (Neuroglial Cells and Schizophrenia)

  • 원승희
    • 생물정신의학
    • /
    • 제22권2호
    • /
    • pp.47-54
    • /
    • 2015
  • In the past decade, structural, molecular, and functional changes in glial cells have become a major focus in the search for the neurobiological foundations of schizophrenia. Glial cells, consisting of oligodendrocytes, astrocytes, microglia, and nerve/glial antigen 2-positive cells, constitute a major cell population in the central nervous system. There is accumulating evidence of reduced numbers of oligodendrocytes and altered expression of myelin/oligodendrocyte-related genes that might explain the white matter abnormalities and altered inter- and intra-hemispheric connectivities that are characteristic signs of schizophrenia. Astrocytes play a key role in the synaptic metabolism of neurotransmitters ; thus, astrocyte dysfunction may contribute to certain aspects of altered neurotransmission in schizophrenia. Increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance to the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.

Notch Inhibitor: a Promising Carcinoma Radiosensitizer

  • Yu, Shu-Dong;Liu, Fen-Ye;Wang, Qi-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5345-5351
    • /
    • 2012
  • Radiotherapy is an important part of modern cancer management for many malignancies, and enhancing the radiosensitivity of tumor cells is critical for effective cancer therapies. The Notch signaling pathway plays a key role in regulation of numerous fundamental cellular processes. Further, there is accumulating evidence that dysregulated Notch activity is involved in the genesis of many human cancers. As such, Notch inhibitors are attractive therapeutic agents, although as for other anticancer agents, they exhibit significant and potential side effects. Thus, Notch inhibitors may be best used in combination with other agents or therapy. Herein, we describe evidence supporting the use of Notch inhibitors as novel and potent radiosensitizers in cancer therapy.

Regulatory T Cell Therapy for Autoimmune Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제8권4호
    • /
    • pp.107-123
    • /
    • 2008
  • It has now been well documented in a variety of models that T regulatory T cells (Treg cells) play a pivotal role in the maintenance of self-tolerance, T cell homeostasis, tumor, allergy, autoimmunity, allograft transplantation and control of microbial infection. Recently, Treg cell are isolated and can be expanded in vitro and in vivo, and their role is the subject of intensive investigation, particularly on the possible Treg cell therapy for various immune-mediated diseases. A growing body of evidence has demonstrated that Treg cells can prevent or even cure a wide range of diseases, including tumor, allergic and autoimmune diseases, transplant rejection, graft-versus-host disease. Currently, a large body of data in the literature has been emerging and provided evidence that clear understanding of Treg cell work will present definite opportunities for successful Treg cell immunotherapy for the treatment of a broad spectrum of diseases. In this Review, I briefly discuss the biology of Treg cells, and summarize efforts to exploit Treg cell therapy for autoimmune diseases. This article also explores recent observations on pharmaceutical agents that abrogate or enhance the function of Treg cells for manipulation of Treg cells for therapeutic purpose.