• Title/Summary/Keyword: theory lattice

Search Result 164, Processing Time 0.035 seconds

Phase Behavior of Binary and Ternary Blends Having the Same Chemical Components and Compositions

  • Yoo, Joung-Eun;Kim, Yong;Kim, Chang-Keun;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.303-310
    • /
    • 2003
  • The phase behavior of binary blends of dimethylpolycarbonate-tetramethyl polycarbonate (DMPCTMPC) copolycarbonates and styrene-acrylonitrile (SAN) copolymers has been examined and then compared with that of DMPC/TMPC/SAN ternary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of homopolymers. Both binary and ternary blends were miscible at certain blends compositions, and the miscible blends showed the LCST-type phase behavior or did not phase separated until thermal degradation temperature. The miscible region of binary blends is wider than that of the corresponding ternary blends. Furthermore, the phase-separation temperatures of miscible binary blends are higher than those of miscible ternary blends at the same chemical compositions. To explain the destabilization of polymer mixture with the increase of the number of component, interaction energies of binary pairs involved in these blends were calculated from the phase separation temperatures using lattice-fluid theory and then the phase stability conditions for the polymer mixture was analyzed with volume fluctuation thermodynamics.

Oxygen-Deficient Perovskite, (CaLa) (MgMn)O5.43 Prepared Under Oxygen Gas Pressure of 1 Bar (산소 1기압하에서 합성된 산소결함 Perovskite(CaLa)(MgMn)O$_{5.43}$의 물리화학적 특성연구)

  • 최진호;홍승태;김승준
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.603-610
    • /
    • 1991
  • An oxygen deficient perovskite (CaLa)(MgMn)O5.43, with the cubic unit cell parameter of 3.826$\AA$, was prepared 115$0^{\circ}C$ for 10 hrs under the ambient oxygen gas pressure. The average oxidation state of manganese was determined to be 3.86 by the iodometric titration, so that the perovskite could be formulated as (CaLa) ({{{{ { MgMn}`_{ chi } ^{II } }}{{{{ { Mn}`_{ y} ^{III } }}{{{{ { Mn}`_{1- chi -y } ^{IV } }})O5.43 (2x+y=0.14). From X-ray photoelectron spectroscopy, the manganese ions in the lattice are mostly tetravalent, but two paramagnetic configurations were observed in the EPR spectrum: One sharp isotropic signal with hyperfines (ΔH 50 G, g=1.997$\pm$0.002 and │A│=82(4)$\times$10-4 cm-1) and a broad isotropic one (ΔH 1600 G, g=1.994$\pm$0.002), those which correspond respectively to Mn(II) and Mn(IV) ions. According to the magnetic susceptibility measurement, it follows the Curie-Weiss law from 20 K up to room temperature with $\mu$eff=5.23 $\mu$B, which is relatively larger than spin-only value({{{{ { mu }`_{eff} ^{s.o } }}=4.04 $\mu$B) due to the effect of weak ferromagnetic coupling. Such a result is in accord with a theory of semicovalence exchange.

  • PDF

A Study on Traditional Korean Furniture, PyeongSang II - Developing Modularized and Multi-useful Bed adopting PyeongSang - (한국 전통목가구 평상(平床) 연구 2 - 평상을 적용한 모듈화 다용도 침대 개발 -)

  • Kim, Min Keung;Moon, Sun Ok
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.145-155
    • /
    • 2017
  • This study explores developing a piece of modularized and multi-useful bed adapting PyeongSang followed by the last issue, 'a study on traditional Korean furniture, PyeongSang I' for the understanding of the furniture from theory and history. Adopted From the joints and ornament, the modularized elements were designed and developed in order to compose the head board, the side board, the foot board, and the seat bottom. The joints are sambang miter, samae miter, dado, and mortise and tenon, which are strong in holding the bed. And the ornament is lattice patterns like geokjamun and manjamun, elephant eyes patterns like ansangmun from the traditional furniture. Using the elements, the bed is composed with six modules which make people free and easy to move and transform them. Hence, the bed is multi-useful by using the double, the twin the single, and various sofas by the way to display them such as two, three, four, five, and six modules. And the bed was made of bright zelkova tree and dark heat treated ash expressing contrast of black and white, the design concept modern and easy to make many people access to them.

Identification of crystal variants in shape-memory alloys using molecular dynamics simulations

  • Wu, Jo-Fan;Yang, Chia-Wei;Tsou, Nien-Ti;Chen, Chuin-Shan
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Shape-memory alloys (SMA) have interesting behaviors and important mechanical properties due to the solid-solid phase transformation. These phenomena are dominated by the evolution of microstructures. In recent years, the microstructures in SMAs have been studied extensively and modeled using molecular dynamics (MD) simulations. However, it remains difficult to identify the crystal variants in the simulation results, which consist of large numbers of atoms. In the present work, a method is developed to identify the austenite phase and the monoclinic martensite crystal variants in MD results. The transformation matrix of each lattice is calculated to determine the corresponding crystal variant. Evolution of the volume fraction of the crystal variants and the microstructure in Ni-Ti SMAs under thermal and mechanical boundary conditions are examined. The method is validated by comparing MD-simulated interface normals with theoretical solutions. In addition, the results show that, in certain cases, the interatomic potential used in the current study leads to inconsistent monoclinic lattices compared with crystallographic theory. Thus, a specific modification is applied and the applicability of the potential is discussed.

Electronic Structure and Half-Metallicity in the Zr2RuZ (Z = Ga, In, Tl, Ge, Sn, and Pb) Heusler Alloys

  • Eftekhari, A.;Ahmadian, F.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1370-1376
    • /
    • 2018
  • The electronic structures, magnetic properties and half-metallicity in $Zr_2RuZ$ (Z = Ga, In, Tl, Ge, Sn, and Pb) alloys with $AlCu_2Mn-$ and $CuHg_2Ti$-type structures were investigated using first-principles density functional theory (DFT) calculations. The calculations showed that $Zr_2RuIn$, $Zr_2RuTl$, $Zr_2RuSn$, and $Zr_2RuPb$ compounds with $CuHg_2Ti$-type structures were half-metallic ferromagnets with half-metallic band gaps of 0.18, 0.24, 0.22, and 0.27 eV, respectively. The half-metallicity originated from d-d and covalent hybridizations between the transition metals Zr and Ru. The total magnetic moments of the $Zr_2RuZ$ (Z = In, Tl, Sn, and Pb) compounds with $CuHg_2Ti$-type structures were integer values of $1{\mu}B$ and $2{\mu}B$, which is in agreement with Slater-Pauling rule ($M_{tot}=Z_{tot}-18$). Among these compounds, $Zr_2RuIn$ and $Zr_2RuTl$ were half-metals over relatively wide regions of the lattice constants, indicating that these two new Heusler alloys are ideal candidates for use in spintronic devices.

The clustering of critical points in the evolving cosmic web

  • Shim, Junsup;Codis, Sandrine;Pichon, Christophe;Pogosyan, Dmitri;Cadiou, Corentin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2021
  • Focusing on both small separations and baryonic acoustic oscillation scales, the cosmic evolution of the clustering properties of peak, void, wall, and filament-type critical points is measured using two-point correlation functions in ΛCDM dark matter simulations as a function of their relative rarity. A qualitative comparison to the corresponding theory for Gaussian random fields allows us to understand the following observed features: (i) the appearance of an exclusion zone at small separation, whose size depends both on rarity and signature (i.e. the number of negative eigenvalues) of the critical points involved; (ii) the amplification of the baryonic acoustic oscillation bump with rarity and its reversal for cross-correlations involving negatively biased critical points; (iii) the orientation-dependent small-separation divergence of the cross-correlations of peaks and filaments (respectively voids and walls) that reflects the relative loci of such points in the filament's (respectively wall's) eigenframe. The (cross-) correlations involving the most non-linear critical points (peaks, voids) display significant variation with redshift, while those involving less non-linear critical points seem mostly insensitive to redshift evolution, which should prove advantageous to model. The ratios of distances to the maxima of the peak-to-wall and peak-to-void over that of the peak-to-filament cross-correlation are ~2-√~2 and ~3-√~3WJ, respectively, which could be interpreted as the cosmic crystal being on average close to a cubic lattice. The insensitivity to redshift evolution suggests that the absolute and relative clustering of critical points could become a topologically robust alternative to standard clustering techniques when analysing upcoming surveys such as Euclid or Large Synoptic Survey Telescope (LSST).

  • PDF

Effects of Fe Substitution on Lithium Incorporation into Muscovite (백운모 내 리튬 함유에 대한 Fe 치환의 영향)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.127-133
    • /
    • 2015
  • Li-bearing muscovite is commonly found along with trioctahedral lepidolite in granitic pegmatites. Structurally, $Li^+$ ions can replace $K^+$ ions in the interlayer (Int) of muscovite or incorporate into vacancies of the dioctahedral sheet (Sub). However, detailed mechanism of the lithium incorporation into muscovite is challenging to investigate using experimental techniques alone. In the current study, density functional theory (DFT) has been applied to examine the crystal structure and energy variation when $Li^+$ resides in the interlayer or the octahedral sheet. Depending on the position of $Li^+$ (i.e., Int vs. Sub), DFT showed significant differences in the mica's structures such as lattice parameters, sheet thickness, interlayer separation, and OH angles with respect to the ab plane. DFT further showed that, in pure muscovite, $Li^+$ has a lower energy when it is located in Int than Sub. By contrast, in the case of $Fe^{2+}$ substitution into the octahedral sheet, $Li^+$ has a lower energy in Sub than in Int. These results imply that $Li^+$ incorporates into the Al octahedral sheets only when the octahedral sheets possess structural charges, suggesting cation substitution in the octahedral sheets plays an important role in the Li incorporation mechanism into muscovite. They can also explain the experimental observation about the positive relationship between $Fe^{2+}$ and $Li^+$ amounts in Li-bearing muscovite.

A Computational Mineralogy Study of the Crystal Structure and Stability of Aluminum Silicate (Al2SiO5) Minerals (알루미늄 규산염(Al2SiO5) 광물의 결정구조와 안정성에 대한 계산광물학 연구)

  • Kim, Juhyeok;Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • Aluminum silicates ($Al_2SiO_5$) undergo phase transitions among kyanite, andalusite, and sillimanite depending on temperature and pressure conditions. The minerals are often used as an important indicator of the degree of metamorphism for certain metamorphic rocks. In this study, we have applied classical molecular dynamics (MD) simulations and density functional theory (DFT) to the aluminum silicates. We examined the crystal structures as a function of applied pressure and the corresponding stabilities based on calculated enthalpies at each pressure. In terms of the lattice parameters, both methods showed that the volume decreases as the pressure increases as observed in the experiment. In particular, DFT results differed from experimental results by much less than 1%. As to the relative stability, however, both methods showed different levels of accuracy. In the MD simulations, a transition pressure at which the relative stability between two minerals reverse could not be determined because the enthalpies were insensitive to the applied pressure. On the other hand, in DFT calculations, the relative stability relation among the three minerals was consistent with experiment, although the transition pressure was strongly dependent on the choice of the electronic exchange-correlation functional.

A Study on the Theory of $\frac {1}{f}$ Noise in Electronic Devies (전자소자에서의 $\frac {1}{f}$잡음에 관한 연구)

  • 송명호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1978
  • The 1/f noise spectrum of short-circuited output drain current due to the Shockley-Read-Hal] recombination centers with a single lifetime in homogeneous nondegenerate MOS-field effcte transtors with n-type channel is calculated under the assumptions that the quasi-Fermi level for the carriers in each energy band can not be defined if we include the fluctuation for time varying quantities. and so 1/f noise is a majority carrier effect. Under these assumptions the derived 1/f noise in this paper show some essential features of the 1/f noise in MOS-field effect transistors. That is, it has no lowfrequency plateau and is proportionnal to the channel cross area A and to the driain bias voltage Vd and inversely proportional to the channel length L3 in MOS field effect transistors. This model can explain the discrepancy between the transition frequency of the noise spectrum from 1/f- response to 1/f2 and the frequency corresponding to the relaxation time related to the surface centers in p-n junction diodes. In this paper the results show that the functional form of noise spectrum is greatly influenced by the functional forms of the electron capture probability cn (E) and the relaxation time r (E) for scattering and the case of lattice scattering show to be responsible for the 4 noise in MOS fold effect transistors. So we canconclude that the source of 1/f noise is due to lattice scattering.

  • PDF

Encounter of Lattice-type coding with Wiener's MMSE and Shannon's Information-Theoretic Capacity Limits in Quantity and Quality of Signal Transmission (신호 전송의 양과 질에서 위너의 MMSE와 샤논의 정보 이론적 정보량 극한 과 격자 코드 와의 만남)

  • Park, Daechul;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.83-93
    • /
    • 2013
  • By comparing Wiener's MMSE on stochastic signal transmission with Shannon's mutual information first proved by C.E. Shannon in terms of information theory, connections between two approaches were investigated. What Wiener wanted to see in signal transmission in noisy channel is to try to capture fundamental limits for signal quality in signal estimation. On the other hands, Shannon was interested in finding fundamental limits of signal quantity that maximize the uncertainty in mutual information using the entropy concept in noisy channel. First concern of this paper is to show that in deriving limits of Shannon's point to point fundamental channel capacity, Shannon's mutual information obtained by exploiting MMSE combiner and Wiener filter's MMSE are interelated by integro-differential equantion. Then, At the meeting point of Wiener's MMSE and Shannon's mutual information the upper bound of spectral efficiency and the lower bound of energy efficiency were computed. Choosing a proper lattice-type code of a mod-${\Lambda}$AWGN channel model and MMSE estimation of ${\alpha}$ confirmed to lead to the fundamental Shannon capacity limits.