• Title/Summary/Keyword: theory lattice

Search Result 162, Processing Time 0.026 seconds

Study on the Adsorption Behavior of FeS in Anaerobic Conditions (혐기성 조건에서 FeS의 흡착 거동 연구)

  • 김정배
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.505-512
    • /
    • 1997
  • The Interfacial characteristics between various heavy metals and hydrous FeS were investigated. Heavy metals which have lower sulfide solubilities than FeS undergoes the lecttice exchange reaction when these metal tons contact FeS In the aqueous phase. For heavy metals which have higher suede solubilities than FeS, these metal ions adsorb on the surface of FeS. Such characteristic reactions were interpreted by the soled solution formation theory. The presence of ligand such as EDTA reduced largely metal removal efficiency due to formation of metal-ligand complex In the solution. In an attempt to elucidate the Interfacial characteristics, zeta potential of the hydrous FeS In the absence and In the presence of various metal loons were measured and analyzed.

  • PDF

FILTERS OF RESIDUATED LATTICES BASED ON SOFT SET THEORY

  • JUN, YOUNG BAE;LEE, KYOUNG JA;PARK, CHUL HWAN;ROH, EUN HWAN
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.155-168
    • /
    • 2015
  • Strong uni-soft filters and divisible uni-soft filters in residuated lattices are introduced, and several properties are investigated. Characterizations of a strong and divisible uni-soft filter are discussed. Conditions for a uni-soft filter to be divisible are established. Relations between a divisible uni-soft filter and a strong uni-soft filter are considered.

Nanomechanical Properties Analysis on Polymer Blend Surfaces by Atomic Force Microscopy

  • Fujinami, So;Nakajima, Ken;Nishi, Toshio
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.340-340
    • /
    • 2006
  • Applying force-distance curve measurement by atomic force microscopy to a theoretical mechanical model gives us elastic properties of polymer surfaces. Our group focuses on force-mapping method, in which force-distance curve is performed at each lattice point on a sample surface and subsequently a variety of properties derived from analytical results are combined to construct a 2-dimensional image. With this method we succeeded in deriving Young' s modulus distribution map method of rubbery/rubbery polymer blend surfaces with ${\sim}100\;nm$ lateral resolution. We also applied force-mapping method to another theory to divide distribution of hardness from that of adhesion. We will demonstrate recent progress.

  • PDF

Analysis of Hot Isostatic Pressing of Powder Compacts Considering Diffusion and Power-Law Creep (확산과 Power- law 크립을 고려한 압분체 열간정수압압축 공정의 해석)

  • Seo M. H.;Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.66-69
    • /
    • 2000
  • In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at 1125 $!`\acute{\dot{E}}$. The results of the calculations were verified using literature data It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.

  • PDF

Unsteady Aerodynimic Analysis of an Aircraft Using a Frequency Domain 3-D Panel Method (주파수영역 3차원 패널법을 이용한 항공기의 비정상 공력해석)

  • 김창희;조진수;염찬홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1808-1817
    • /
    • 1994
  • Unsteady aerodynamic analysis of an aircraft is done using a frequency domian 3-D panel method. The method is based on an unsteady linear compressible lifting surface theory. The lifting surface is placed in a flight patch, and angle of attack and camber effects are implemented in upwash. Fuselage effects are not considered. The unsteady solutions of the code are validated by comparing with the solutions of a hybrid doublet lattice-doublet point method and a doublet point method for various wing configurations at subsonic and supersonic flow conditions. The calculated results of dynamic stability derivatives for aircraft are shown without comparision due to lack of available measured data or calculated results.

Length- and parity-dependent electronic states in one-dimensional carbon atomic chains on C(111)

  • Kim, Hyun-Jung;Oh, Sang-Chul;Kim, Ki-Seok;Zhang, Zhenyu;Cho, Jun-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.56-56
    • /
    • 2010
  • Using first-principles density-functional theory calculations, we find dramatically different electronic states in the C chains generated on the H-terminated C(111) surface, depending on their length and parity. The infinitely long chain has $\pi$ electrons completely delocalized over the chain, yielding an equal C-C bond length. As the chain length becomes finite, such delocalized $\pi$ electrons are transformed into localized ones. As a result, even-numbered chains exhibit a strong charge-lattice coupling, leading to a bond-alternated structure, while odd-numbered chains show a ferrimagnetic spin ordering with a solitonlike structure. These geometric and electronic features of infinitely and finitely long chains are analogous to those of the closed (benzene) and open (polyacetylene) chains of hydrocarbons, respectively.

  • PDF

The Effect of Solvent Density on the Ethyl Acetoaceate Tautomerism (에틸 아세토아세테이트 토토머리즘 평형 상수의 밀도 의존성)

  • Park, YoonKook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.291-295
    • /
    • 2006
  • The keto-enol tautomeric equilibrium constant, K, of ethyl acetoacetate in compressed and supercritical carbon dioxide was determined by using FT-IR (Fourier transform infrared) spectroscopy at three different temperatures. In order to investigate the effect of solvent density, the $CO_{2}$ pressure was systematically changed at a constant temperature. As the $CO_{2}$ density is increased, the amount of keto tautomer is increased, causing the K value to decrease. The modified lattice fluid hydrogen bonding theory has been applied to investigate the effect of density on the K.

Anisotropic Elasto-Viscoplastic Finite Element Analysis for Polycrystalline Materials (다결정재의 이방성 탄.점소성 유한요소해석)

  • 이용신;김응주
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-76
    • /
    • 1997
  • The deformations of polycrystalline materials are modelled by linking a constitutive equation for the crystallographic slip of a single crystal to the macroscopic behavior of the aggregate. In this study, anisotropic elasticity (lattice stretching) of a cubic crystal is incoporated into the anisotropic plasticity from crystallographic slip. The constitutive description for the aggregate, derived from a crystal plasticity theory, is used to formulate a Consistent Penalty Finite Element Method for the anisotropic elasto-viscoplastic deformation of polycrystalline materials. As an application, a plane-strain forging process is simulated and the effects of the initial textures on the deformation behavior of the workpiece are examined.

  • PDF

Structural, Magnetic, and Electronic Properties of Fe: A Screened Hybrid Functional Study

  • Jang, Young-Rok;Yu, Byung-Deok
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.201-205
    • /
    • 2011
  • We performed total energy and electronic structure calculations for the basic ground state properties of Fe using the conventional generalized gradient approximation (GGA) and screened hybrid functionals as the form of the exchange-correlation functional. To that end, we calculated structural (equilibrium lattice constants, bulk moduli, and cohesive energies) and electronic (magnetic moments and densities of states) properties. Both functional calculations gave the correct ground state, the ferromagnetic bcc phase, in which the structural parameters agreed well with experimental results. However, the description of the cohesive energies and magnetic moments at the ground state exhibited different behavior from each other: the unusually small cohesive energy and large magnetic moment were observed in the screened hybrid functional calculations compared to the GGA calculations. The reason for the difference was examined by analyzing the calculated electronic structures.

Metamagnetism in $Fe_3$Al Alloy

  • Rhee, Joo-Yull;Lee, Young-Pak
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.60-62
    • /
    • 2003
  • In this study we report the results of ab initio first-principles calculations to investigate the possibility of metamagnetic behavior in Fe$_3$Al alloy. We used the WIEN2k package of full-potential linearized-augmented- plane-wave method within the local-spin-density approximation to the density-functional theory. The exchange-correlation functional is the generalized-gradient approximation of Perdew-Burke-Ernzerhof. The theoretical lattice constant, which is about 0.5% smaller than the experimental one, is obtained by minimizing the total energy. If the volume decreases about 9 % from the equilibrium, the total magnetic moment decreases abruptly from 4.6 $\mu_{B}$/f.u. to 4.0 $\mu_{B}$/f.u. Since this change is considerably large (∼14%), it is possible to measure by a simple high-pressure experiment at about 180 kbar.